激光扫描雷达
㈠ 三维激光扫描仪和雷达什么关系啊
三维激光没有穿透能力,你看不到的他也看不到;雷达种类太多,很多雷达具有穿透能力,比如地质雷达,就能在不开挖的情况下依据雷达波分析出地下的大概构造。两种技术,没有什么关系。
㈡ 激光雷达有什么优点
激光雷达是由微波雷达发展而来的,它们都是向目标发射探测信号,然后通过测量反射信号的到达时间、波束的指向、频率变化等参数来确定目标的距离、方位和速度。只是激光雷达利用激光束来工作,波长比微波要短得多,只有0.4~0.75微米。
由于激光具有许多优点,如它的单色性好,亮度高,方向性强等,使激光雷达比微波雷达更为优越。它的精度高,分辨力强,设备小而轻,有的能显示目标图像,还可以用来测速。随着激光技术水平的不断提高,激光雷达在国防上的应用将会日益广泛。
激光多普勒频移雷达:它是利用多普勒效应原理,利用频率计测定频移来达到测量目的的。因为激光波长极短,在目标相对雷达运动时,频移现象将特别显著,故能精确测定目标的运动情况。
激光测高计:用于从空中测量地面或海面的高度。
人造卫星激光雷达:用于对人造卫星进行测距和跟踪。
激光气象雷达:用以测量云层方位、晴空湍流、流星尘等。
喇曼激光雷达:用以测定大气污染情况和大气中各种物质成分。
激光雷达发现水下目标障碍回避雷达:可绕过山峰等各种地形障碍来进行探测。
㈢ 激光雷达与普通微波雷达相比的优点有哪些
激光雷达与普通微波雷达相比,激光雷达由于使用的是激光束,工作频率较微波高了许多,因此带来了很多特点,主要有
分辨率高
激光雷达可以获得极高的角度、距离和速度分辨率。通常角分辨率不低于0.1mard也就是说可以分辨3千米距离上相距0.3米的两个目标,并可同时跟踪多个目标;距离分辨率可达0.1米;速度分辨率能达到10米/秒以内。距离和速度分辨率高,意味着可以利用距离——多谱勒成像技术来获得目标的清晰图像。分辨率高,是激光雷达的最显著的优点,其多数应用都是基于此。
隐蔽性好、抗有源干扰能力强
激光直线传播、方向性好、光束非常窄,只有在其传播路径上才能接收到,因此敌方截获非常困难,且激光雷达的发射系统(发射望远镜)口径很小,可接收区域窄,有意发射的激光干扰信号进入接收机的概率极低;另外,与微波雷达易受自然界广泛存在的电磁波影响的情况不同,自然界中能对激光雷达起干扰作用的信号源不多,因此激光雷达抗有源干扰的能力很强,适于工作在日益复杂和激烈的信息战环境中。
低空探测性能好
微波雷达由于存在各种地物回波的影响,低空存在有一定区域的盲区(无法探测的区域)。而对于激光雷达来说,只有被照射的目标才会产生反射,完全不存在地物回波的影响,因此可以“零高度”工作,低空探测性能较微波雷达强了许多。
体积小、质量轻
通常普通微波雷达的体积庞大,整套系统质量数以吨记,光天线口径就达几米甚至几十米。而激光雷达就要轻便、灵巧得多,发射望远镜的口径一般只有厘米级,整套系统的质量最小的只有几十公斤,架设、拆收都很简便。而且激光雷达的结构相对简单,维修方便,操纵容易,价格也较低。
㈣ 激光雷达的扫描频率是什么
指前者,20ms扫描一圈。圈才是扫描单位,激光束不是。
㈤ 激光雷达扫描仪是什么
激光雷达起源于20世纪60年代初,在激光发明后不久,结合了激光聚焦成像和使用适当的传感器和数据采集电子设备测量信号返回的时间计算距离的能力。
飞机和卫星上安装激光雷达仪器可以进行高空测绘——最近的一个例子是美国地质调查局先进机载激光雷达的试验研究。 美国国家航空航天局已经确定激光雷达是实现未来机器人和载人登月飞行器自主精确安全着陆的关键技术。
波长因目标而异:从大约10微米到大约250纳米的紫外线。典型地,光是通过反向散射反射的,而不是镜子的纯反射。不同类型的散射用于不同的激光雷达应用:最常见的是瑞利散射、米氏散射、拉曼散射和荧光反应。
合适的波长组合可以通过识别返回信号强度中与波长相关的变化来远程绘制大气组成。
㈥ 激光雷达与激光3d扫描有什么区别
当然不是同一个东西,三维激光扫描仪主要就用在三维抄数建立数字模型,工业设计等逆向工程的辅助设计工具。激光雷达是雷达的一种。
㈦ 激光雷达和激光扫描仪是同一个东西么
不是!三维激光扫描仪是在三维抄数建立数字模型,工业设计等逆向工程的辅助设计工具。激光雷达是雷达的一种。
㈧ 激光雷达的工作原理
激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,打到地面的树木、道路、桥梁和建筑物上,引起散射,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。
至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这也是直接探测型雷达的基本工作原理。
激光雷达的作用就是精确测量目标的位置(距离与角度)、形状(大小)及状态(速度、姿态),从而达到探测、识别、跟踪目标的目的。
激光雷达是一种雷达系统,是一种主动传感器,所形成的数据是点云形式。其工作光谱段在红外到紫外之间,主要发射机、接收机、测量控制和电源组成。
(8)激光扫描雷达扩展阅读
激光雷达分类
一般来说,按照现代的激光雷达的概念,常分为以下几种:
1、按激光波段分,有紫外激光雷达、可见激光雷达和红外激光雷达。
2、按激光介质分,有气体激光雷达、固体激光雷达、半导体激光雷达和二极管激光泵浦固体激光雷达等。
3、按激光发射波形分,有脉冲激光雷达、连续波激光雷达和混合型激光雷达等。
4、按显示方式分,有模拟或数字显示激光雷达和成像激光雷达。
5、按运载平台分,有地基固定式激光雷达、车载激光雷达、机载激光雷达、船载激光雷达、星载激光雷达、弹载激光雷达和手持式激光雷达等。
6、按功能分,有激光测距雷达、激光测速雷达、激光测角雷达和跟踪雷达、激光成像雷达,激光目标指示器和生物激光雷达等。
7、按用途分,有激光测距仪、靶场激光雷达、火控激光雷达、跟踪识别激光雷达、多功能战术激光雷达、侦毒激光雷达、导航激光雷达、气象激光雷达、侦毒和大气监测激光雷达等。
㈨ 激光雷达和三维激光扫描仪是同一个东西么
不是同一个东西。
激光雷达
工作在红外和可见光波段的雷达称为激光雷达。它由激光发射机、光学接收机、转台和信息处理系统等组成,激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,送到显示器。
激光雷达 LiDAR(Light Detection and Ranging),是激光探测及测距系统的简称。用激光器作为发射光源,采用光电探测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先进探测方式。由发射系统、接收系统、信息处理等部分组成。激光雷达是利用激光进行探测和测量,用途较广泛,多应用在地形图绘制,地形测,无人驾驶等。无人驾驶激光雷达这块国内已经能够量产的就是深圳速腾聚创科技有限公司。
三维激光扫描仪
三维扫描仪的一种,目前日益广泛应用的另一种三维扫描仪是拍照式三维扫描。
通过激光测距原理(包括脉冲激光和相位激光),瞬时测得空间三维坐标值的测量仪器,利用三维激光扫描技术获取的空间点云数据,可快速建立结构复杂、不规则的场景的三维可视化模型。
三维激光扫描仪主要应用在文物保护、城市建筑测量、地形测绘、采矿业、变形监测、工厂、大型结构、管道设计、飞机船舶制造等领域,在工业领域里三维激光扫描仪多用于三维建模,逆向工程,三维检测,产品设计。
相对于激光雷达,三维激光扫描仪多在工业领域。