激光共焦
A. 激光扫描共焦显微镜技术的名词解释
激光共聚焦扫描显微镜(Confocal laser scanning microscope,CLSM)用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬时成像的物点。系统经一次调焦,扫描限制在样品的一个平面内。调焦深度不一样时,就可以获得样品不同深度层次的图像,这些图像信息都储于计算机内,通过计算机分析和模拟,就能显示细胞样品的立体结构。
B. 为什么激光共聚焦显微镜拍出来的是灰度图
真实色共焦显微镜与激光扫描共焦显微镜,二者在成像原理上基本是一样的,最大不同之处是照明光源不同。1、激光扫描共焦显微镜激光扫描共焦显微镜的照明光源是激光,即单色光。其实际成像过程是根据被观察物体对该单色激光的反射光的强弱来成像的。由于是单色光照明,不能分辨颜色,对于在同一试样的同一视场内,颜色不同,但对该单色激光反射光强度相同的不同组织或成分不能分辨。容易产生同相异色,同色异相的现象,不利于对微观组织和成分的正确分辨。2、真实色共焦显微镜真实色共焦显微镜的光源是氙光源,即白光。其实际成像过程是在白光照明的条件下,对物体形貌(包括颜色)进行综合的成像。由于是多色光照明和成像,真实色共焦显微镜能够更真实的反应物体的颜色和形貌,避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这方面,其分辨率远强于激光扫描共焦显微镜综合分析:在有颜色差异的试样的观察条件下,真实色共焦显微镜避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这种条件下,真实色共焦显微镜的分辨率高于激光扫描共焦显微镜。在单色试样的观察条件下,分辨率才接近各自的技术指标。然而,在实际观察的试样中,绝大多数不同的组织和成分都是有颜色差异的。对应于没有颜色差异或颜色差异小的试样,可以通过人为的染色(例如腐蚀处理),提高图像的分辨能力。在这一方面,激光扫描共焦显微镜是无能为力的。另外,分辨率是在特定条件下所能达到的一项技术指标,当在实际使用中,不满足该技术条件时(实际是常常不能满足),其分辨率是达不到所给出的数值。下图是镍铬合金在普通单色激光共聚焦显微镜中的成像,以及使用真实色共聚焦显微镜所成图像的对比,其中红圈内是不同的化合物掺杂,可以清楚看到用单色激光共聚焦显微镜所成的图像,仅凭灰度是无法准确反应其中化合物掺杂的区别的,而真实色共聚焦却可以清楚区分他们的不同。
C. 什么是共焦激光扫描显微镜
由德国卡尔·蔡司公司生产的这种显微镜,把激光光束聚焦到生物回样品的某个平面答,而把该面前后的离焦光束挡掉。这种被称作“光学截面制图”的技术,可以将不同聚焦程度的图像重迭,焦深很大。系统分辨率达0.2微米。尤其是它的三维成像能力,使研究人员可以在原生物样品中“旅游”,或确定吸收荧光染色的细胞组织位置。因此可显示活细胞的相互作用,以及DNA或神经网络等细胞物体的三维结构。在对染色体进行分析时,研究人员可在一个正在分裂的细胞扫描场中观察到转变期的整个过程,然后可变焦到某一个染色体,寻找可能的缺陷和断裂。由于许多样品都很娇嫩,不能承受高能激光,所以要求荧光探测用的光电倍增管具有高灵敏度,以免荧光衰退。
D. 共焦激光扫描显微镜可以用于哪些领域
由德国卡尔·蔡司公司生产的这种显微镜,把激光光束聚焦到生物样品的某个平面,而把该面前后的离焦光束挡掉。这种被称作“光学截面制图”的技术,可以将不同聚焦程度的图像重迭,焦深很大。系统分辨率达0.2微米。尤其是它的三维成像能力,使研究人员可以在原生物样品中“旅游”,或确定吸收荧光染色的细胞组织位置。因此可显示活细胞的相互作用,以及DNA或神经网络等细胞物体的三维结构。在对染色体进行分析时,研究人员可在一个正在分裂的细胞扫描场中观察到转变期的整个过程,然后可变焦到某一个染色体,寻找可能的缺陷和断裂。由于许多样品都很娇嫩,不能承受高能激光,所以要求荧光探测用的光电倍增管具有高灵敏度,以免荧光衰退。
这种共焦激光显微镜正用于神经学、遗传学、免疫学、病理学、生物生理学。当然也可以用于工业领域。如陶瓷和金属超精细加工,可用这种显微镜探测到材料表面0.1微米量级的微小高度起伏。
E. 激光共聚焦扫描显微镜又叫共焦激光扫描显微镜吗
正确叫法是激光共聚主要焦扫描显微镜,意思是使用一束激光,通过物镜聚焦在样品上(第一次聚焦),焦斑被样品微小区域散射,这时的背散射光,再次通过同一个物镜反向聚焦在探测器上,作为这一像素的成像信号保存。
共焦激光扫描显微镜,是有些人记忆差错,顺嘴啦啦出的一个概念,说明他/她不是真正了解激光共聚焦扫描显微镜原理。
F. 激光共聚焦显微镜与真实色共聚焦显微镜的区别
真实色共焦显微镜与激光扫描共焦显微镜,二者在成像原理上基本是一样的,最大不同之处是照明光源不同。
1、激光扫描共焦显微镜
激光扫描共焦显微镜的照明光源是激光,即单色光。其实际成像过程是根据被观察物体对该单色激光的反射光的强弱来成像的。
由于是单色光照明,不能分辨颜色,对于在同一试样的同一视场内,颜色不同,但对该单色激光反射光强度相同的不同组织或成分不能分辨。容易产生同相异色,同色异相的现象,不利于对微观组织和成分的正确分辨。
2、真实色共焦显微镜
真实色共焦显微镜的光源是氙光源,即白光。其实际成像过程是在白光照明的条件下,对物体形貌(包括颜色)进行综合的成像。
由于是多色光照明和成像,真实色共焦显微镜能够更真实的反应物体的颜色和形貌,避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这方面,其分辨率远强于激光扫描共焦显微镜
综合分析:在有颜色差异的试样的观察条件下,真实色共焦显微镜避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这种条件下,真实色共焦显微镜的分辨率高于激光扫描共焦显微镜。在单色试样的观察条件下,分辨率才接近各自的技术指标。然而,在实际观察的试样中,绝大多数不同的组织和成分都是有颜色差异的。对应于没有颜色差异或颜色差异小的试样,可以通过人为的染色(例如腐蚀处理),提高图像的分辨能力。在这一方面,激光扫描共焦显微镜是无能为力的。
另外,分辨率是在特定条件下所能达到的一项技术指标,当在实际使用中,不满足该技术条件时(实际是常常不能满足),其分辨率是达不到所给出的数值。
下图是镍铬合金在普通单色激光共聚焦显微镜中的成像,以及使用真实色共聚焦显微镜所成图像的对比,其中红圈内是不同的化合物掺杂,可以清楚看到用单色激光共聚焦显微镜所成的图像,仅凭灰度是无法准确反应其中化合物掺杂的区别的,而真实色共聚焦却可以清楚区分他们的不同。
G. 简述激光共焦扫描显微镜与普通光学显微镜成像方式的区别和优缺点
一、普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。优点:操作简便,制样方便。
二、激光共聚焦扫描显微镜,用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜扫描激光的聚焦点,也是瞬时成像的物点。由于激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。系统经一次调焦,扫描限制在样品的一个平面内。调焦深度不一样时,就可以获得样品不同深度层次的连续图像,这些图像信息都储于计算机内,通过计算机分析和模拟,就能显示细胞样品的立体结构,实现三维成像与解析,获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。优点:分辨率高于普通光学显微镜;能对样品进行连续无损光学切片,并去除了杂散光的影响,增加了图像的清晰度。
H. 光谱共焦传感器与普通激光位移传感器有什么区别
光谱共焦的精度比普通激光位移传感器的精度要高很多,光谱共焦的基本是纳米级的精度,而普通激光的最高也是微米级的。光谱共焦的量程却远远小于普通激光位移传感器。
I. 荧光显微镜和激光共聚焦显微镜的区别
一、原理不同
1、荧光显微镜:是以紫外线为光源, 用以照射被检物体, 使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置。
2、激光共聚焦显微镜:在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针。
二、特点不同
1、荧光显微镜:用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光。
2、激光共聚焦显微镜:利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,以及在亚细胞水平上观察诸如Ca2+、pH值、膜电位等生理信号及细胞形态的变化。
三、用处不同
1、荧光显微镜:荧光显微镜是免疫荧光细胞化学的基本工具。它是由光源、滤板系统和光学系统等主要部件组成。是利用一定波长的光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的荧光图像。
2、激光共聚焦显微镜:激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像分析等实用研究手段,结合其他相关生物技术,在形态学、生理学、免疫学、遗传学等分子细胞生物学领域 得到广泛应用。
J. 激光共焦拉曼光谱的原理是什么
激光共焦拉曼光谱是用来分析物质组分﹑结构等的一种有效光谱分析手段,其原理是入射激光会引起分子(或晶格)产生振动而损失(或获得)部分能量,致使散射光频率发生变化对散射光的分析,即拉曼光谱分析,可以探知分子的组分,结构及相对含量等,因此被广泛成为分子探针技术。该仪器是在1960后产生的,他的光源采用激光,这样增加了拉曼信号的强度,增强了信号的的强度,使拉曼光谱扩大了适用范围。目前拉曼光谱已成为现代材料结构分析的基本技术手段。