模拟退火算法和遗传算法的结合
⑴ 请问一下遗传算法,模拟退火算法和遗传模拟退火算法的区别,最好能有根据同一个数学问题的matalb程序源代
遗传算法全局优化能力较强,模拟退火算法局部优化能力较强,这是两者的最大区别。遗传模拟退火算法是两者的混合算法,综合了两者的优点。参考资料中是改进遗传算法解决TSP问题的matlab代码。
一时半会应该是搞不清楚的,你可以买一本智能优化算法的书来看,详细了解一下遗传算法和模拟退火算法的原理。
⑵ 请问如何学好遗传算法跟模模拟退火算法,以及如何用MATLAB实现。
我以前是自己编写的模拟退火算法程序,然后用于实现。遗传算法使用的遗传算法工回具性,是设菲尔德答大学编写的,可以下下来看看,是在MATLAB环境下应用的,直接拿来调用就可以了。建议你好好看看模拟退火算法和遗传算法的论文,多打印一些咬牙看个七八天就明白了!然后MATLAB编程!我就是这样做的。祝好运!
⑶ 模拟退火算法、遗传算法、蚁群算法、粒子群算法就算法复杂度和难度来讲哪个要容易一点急!!!!
粒子群比较简单,也好入门。
就两个公式。
我这有个现成的,你运行,看看,分析分析就会了。
⑷ 遗传算法和模拟退火算法结合神经网络,进行故障诊断和数据预测,这种思路的Matlab程序,高分求助
可以用GA来优化BP网络的初始权值,再用SA来训练网络。也可直接将两种算法融合。具体看你想怎么做。附件是一个基于Matlab的SA/GA融合程序,和你的要求不同,但是可以参考。
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
⑸ 模拟退火和遗传算法都可以解决什么问题啊
模拟退火算法和遗传算法,包括禁忌搜索算法,蚁群算法等都可以用来版求解优化问题。权这些算法的一个特点是虽然对于一些复杂问题,比如说DP难题,可能不好找到最优解(理论上找到最优解是可以的),但是可以以较高的效率找到满意解。
查看原帖>>
⑹ 模拟退火法(SA)和遗传算法(GA)的专业解释
n局部搜索,模拟退火,遗传算法,禁忌搜索的形象比喻:
为了找出地球上最高的山,一群有志气的兔子们开始想办法。
1.兔子朝着比现在高的地方跳去。他们找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是局部搜索,它不能保证局部最优值就是全局最优值。
2.兔子喝醉了。他随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,他渐渐清醒了并朝最高方向跳去。这就是模拟退火。
3.兔子们吃了失忆药片,并被发射到太空,然后随机落到了地球上的某些地方。他们不知道自己的使命是什么。但是,如果你过几年就杀死一部分海拔低的兔子,多产的兔子们自己就会找到珠穆朗玛峰。这就是遗传算法。
4.兔子们知道一个兔的力量是渺小的。他们互相转告着,哪里的山已经找过,并且找过的每一座山他们都留下一只兔子做记号。他们制定了下一步去哪里寻找的策略。这就是禁忌搜索。
⑺ 比较模拟退火算法和遗传算法相同点和不同点
模拟退火的话进化是由参数问题t控制的,然后通过一定的操作产生新的解,根据当前解的优劣和温度参数t确定是否接受当前的新解。
遗传算法主要由选择,交叉,变异等操作组成,通过种群进行进化。
主要不同点是模拟退火是采用单个个体进行进化,遗传算法是采用种群进行进化。模拟退火一般新解优于当前解才接受新解,并且还需要通过温度参数t进行选择,并通过变异操作产生新个体。而遗传算法新解是通过选择操作进行选择个体,并通过交叉和变异产生新个体。
相同点是都采用进化控制优化的过程。
⑻ 我想问一下 遗传算法与模拟退火算法相结合的排课系统实现代码
说实话找完整的代码还是比较难的,因为一般都会保密,分享出来内的很少。
不过可以到容pudn程序员联合开发网上去找找。
链接:http://www.pudn.com/downloads104/sourcecode/java/detail428124.html
⑼ 遗传算法、数值算法、爬山算法、模拟退火 各自的优缺点
遗传算法:其优点是能很好地处理约束,跳出局部最优,最终得到全局最优解。缺点是收敛速度慢,局部搜索能力弱,运行时间长,容易受到参数的影响。
模拟退火:具有局部搜索能力强、运行时间短的优点。缺点是全局搜索能力差,容易受到参数的影响。
爬山算法:显然爬山算法简单、效率高,但在处理多约束大规模问题时,往往不能得到较好的解决方案。
数值算法:这个数值算法的含义太宽泛了,指的是哪种数值算法,阵列算法与爬山算法一样,各有优缺点。
(9)模拟退火算法和遗传算法的结合扩展阅读:
注意事项:
遗传算法的机制比较复杂,在Matlab中已经用工具箱中的命令进行了打包,通过调用可以非常方便的使用遗传算法。
函数GA:[x,Fval,reason]=GA(@fitnessfun,Nvars,options)x为最优解,Fval为最优值,@Fitnessness为目标函数,Nvars为自变量个数,options为其他属性设置。系统的默认值是最小值,所以函数文档中应该加上一个减号。
要设置选项,您需要以下函数:options=GaOptimset('PropertyName1','PropertyValue1','PropertyName2','PropertyName3','PropertyValue3'…)通过该函数,可以确定一些遗传算法的参数。