交换遗传学名词解释
1. 特急求救 几个遗传学名词解释
找了半天~~~希望能帮得上你的忙
(PS:什么是性指数~~~好像应该是遗传多样性或者基因多样性指数啊?诚实的说不知道...)
次级例外
摩尔根果蝇杂交结果与英国研究的蛾类和鸟类性别决定机制相抵触;后来证实这种平行的相反恰是基因位于染色体上的又一证据。
果蝇只有8条染色体,而个体性状纷呈繁杂,他担心这样一来,许多性状势必包含在同一染色体中而随之一道“孟德尔化”。物种间染色体数目差异甚大,这使他认为染色体未必是能控制一切性状的基质。
缜密的科学思维,可贵的怀疑主义!当进一步的研究使他对这些问题有所醒悟时,著名的论文《果蝇的限性遗传》诞生了,在遗传学这是第一次将一个具体的基因与一个特定的染色体联系起来。
然而最终直接证明染色体理论的还是摩尔根的合作者布里吉斯的经典研究。他在重复白眼雌蝇与红眼雄蝇的交配时,发现了约1/2000的初级例外子代,即女偏母、子偏父的“性状直传”;再将初级例外中白眼雌蝇与正常红眼雄蝇交配,发现了更高频率(4%)的次级例外。布里吉斯假设初级例外的白眼雌蝇具有XXY的异常性染色体(即母本减数Ⅰ过程中X染色体不分离,共同进入受精卵所致),它形成的4种配子与正常父本的2种配子结合,即形成8种眼色、性别、育性、生活力不同的后代,其中4%为直传性状的次级例外,布里吉斯还逐一镜检了这些果蝇的性染色体,结果完全证实了他的假说,同时还提出了性别平衡理论。这项研究直观地、令人信服地证实了染色体就是基因的载体。
微核
见http://www.120ca.com/index.9.1033.htm
交换抑制因子
建议你察看孟德尔遗传因子的概念
巴尔小体
在哺乳动物体细胞核中,除一条X染色体外,其余的X染色体常浓缩成染色较深的染色质体,此即为巴氏小体。又称X小体,通常位于间期核膜边缘。1949年,美国学者巴尔(M.L.Barr)等发现雌猫的神经细胞间期核中有一个深染的小体而雄猫却没有。在人类,男性细胞核中很少或根本没有巴氏小体,而女性则有1个。以后研究表明,巴氏小体就是性染色体异固缩(细胞分裂周期中与大部分染色质不同步的螺旋化现象)的结果。英国学者莱昂(M.F.Lyon)认为,这种异固缩的X染色体(巴氏小体)缺乏遗传活性,提出“莱昂氏假说”,其内容主要是:(1)正常雌性哺乳动物体细胞中的两个X染容色体之一在遗传性状表达上是失活的;(2)在同一个体的不同细胞中,失活的X染色体可来源于雌性亲本,也可来源于雄性亲本;(3)失活现象发生在胚胎发育的早期,一旦出现则从这一细胞分裂增殖而成的体细胞克隆中失活的都是同一来源的染色体。巴氏小体的数目及形态可通过显微镜观察得知,如可从人的口腔内刮取少许上皮细胞或取头发的发根,经染色处理后即可看到。巴氏小体直径约1微米,位于细胞核周缘部,略呈三角形、尖端向内。通过巴氏小体检查可确定胎儿性别和查出性染色体异常的患者,如克氏(Klinefelter′s)综合征患者外貌为男性,但有一个巴氏小体,可判定患者的核型是47,XXY;而外表为女性的特纳氏(Turner's)综合征患者却无巴氏小体,故判断患者的核型是45,XO。其他性染色体异常的患者如XXY、XXYY有1个巴氏小体,而XXX、XXXY有2个巴氏小体等。
遗传力
概括地来讲,相关遗传力具有遗传力和遗传相关的双重特征。遗传力是相关遗传力的一个特例而相关遗传力则是遗传力概念本身的扩展。用相关遗传力来表达性状间的相关遗传变异要比通常所用的遗传相关更准确一些。
对于一个表型的变异究竟是遗传因子起主要作用还是环境因子起主要用呢?为了解答这个问题人们又引入一个概念叫遗传力(heritability)。遗传力表明某一性状受到遗传控制的程度。它介于0与+1之间,当等于1时表明表型变异完全是由遗传的因素决定的,当等于0时表型变异由环境所造成,从表5-7中我们不难看出,人类的身长,智商及精神分裂症中的一种类型受遗传控制的程度较大;相反像数学的天赋等遗传传的作用很小,主要是依靠后天的努力和培养。遗传力又分为广义遗传力(broad-sense heritability)和狭义遗传力(narrow-sense heritability)。广义遗传力是指表型方差(Vp)中遗传方差(Ve)所占的比率
狭义遗传力是指表型方差(Ve)中加性方差(VA)所占的比率
2. 关于医学遗传学的几个名词解释
1、医学遗传学(medical genetics)是医学与遗传学相结合的一门边缘学科,是遗传学知识在医学领域中的应用。而医学遗传学的理论和实践又丰富和发展了遗传学。医学遗传学的研究对象是人类。人类遗传学(human genetics)探讨人类正常性状与病理性状(trait,或character特征)的遗传现象及其物质基础。而医学遗传学则主要研究人类(包括个体和群体)病理性状的遗传规律及其物质基础。医学遗传学通过研究人类疾病的发生发展与遗传因素的关系,提供诊断、预防和治疗遗传病和与遗传有关疾病的科学根据及手段,从而对改善人类健康素质作出贡献。
补充:医学遗传学不仅与生物学、生物化学、微生物及免疫学、病理学、药理学、组织胚胎学、卫生学等基础医学密切有关,而且已经渗入各临床学科之中。研究临床各种遗传病的诊断、产前诊断、预防、遗传咨询和治疗的学科称为临床遗传学(clinical genetics)。
医学遗传学主要由人类细胞遗传学(human cytogenetics)和人类生化遗传学(human biochemical genetics)组成。它们分别用形态学和生物化学方法研究人类正常及变异性状的物质基础。而分子遗传学(molecular genetics)是生化遗传学的发展和继续;分子细胞遗传学(molecular cytogenetics)则是细胞遗传学与分子遗传学结合的产物。它们互相补充,甚至正融为一体,使人们能从基因水平提示各种遗传病的本质,从而不断完善基因诊断、预防以至治疗遗传病的措施。
2、TSG=tumor suppressor gene
与原癌基因编码的蛋白质促进细胞生长相反,在正常情况下存在于细胞内的另一类基因——肿瘤抑制基因的产物能抑制细胞的生长。若其功能丧失则可能促进细胞的肿瘤性转化。由此看来,肿瘤的发生可能是癌基因的激活与肿瘤抑制基因的失活共同作用的结果。目前了解最多的两种肿瘤抑制基因是Rb基因和P53基因。它们的产物都是以转录调节因子的方式控制细胞生长的核蛋白。其它肿瘤抑制基因还有神经纤维瘤病-1基因、结肠腺瘤性息肉基因、结肠癌丢失基因和Wilms瘤-1等。
Rb基因随着对一种少见的儿童肿瘤——视网膜母细胞瘤的研究而最早发现的一种肿瘤抑制基因。Rb基因的纯合子性的丢失见于所有的视网膜母细胞瘤及部分骨肉瘤、乳腺癌和小细胞肺癌等。Rb基因定位于染色体13q14,编码一种核结合蛋白质(P105-Rb)。它在细胞核中以活化的脱磷酸化和失活的磷酸化的形式存在。活化的Rb蛋白对于细胞从G0/G1期进入S期有抑制作用。当细胞受到刺激开始分裂时,Rb 蛋白被磷酸化失活,使细胞进入S期。当细胞分裂成两个子细胞时,失活的(磷酸化的)Rb蛋白通过脱磷酸化再生使子细胞处于G1期或G0的静止状态。如果由于点突变或13q14的丢失而使Rb基因失活,则Rb蛋白的表达就会出现异常,细胞就可能持续地处于增殖期,并可能由此恶变。
p53基因定位于17号染色体。正常的p53蛋白(野生型)存在于核内,在脱磷酸化时活化,有阻碍细胞进入细胞周期的作用。在部分结肠癌、肺癌、乳腺癌和胰腺癌等均发现有p53基因的点突变或丢失,从而引起异常的p53蛋白表达,而丧失其生长抑制功能,从而导致细胞增生和恶变。近来还发现某些DNA病毒,例如HPV和SV-40,其致癌作用是通过它们的癌蛋白与活化的Rb蛋白或p53蛋白结合并中和其生长抑制功能而实现的。
3、动态突变:
在研究与人类神经系统遗传性疾病相关的基因时,在患者基因的编码序列中,或是编码序列两侧的序列中发现某个密码子的拷贝数目远远多于正常个体的拷贝数。换句话说,患者基因中某种三核苷酸的重复拷贝数急剧增加,这种突变导致了疾病的发生。这种三核苷酸重复拷贝数增加,不仅可发生在上代的生殖细胞中而遗传给下一代,而且在当代的体细胞中也可发生,并同样具有表型效应。除此之外,一个个体的不同类型细胞或同一类型的不同细胞中,三核苷酸重复拷贝数也可以是不同的。重复拷贝数改变后的基因的可突变性(mutability),将不同于拷贝数改变前的基因。这不同于以往发现的基因突变。过去观察到的基因突变体仍然有着与其上代相同的突变率,突变率是很低的,而且变动是很小的。比如,编码血纤维原肽(400个氨基酸组成)的基因的突变率,估计是每20万年改变一个氨基酸,这些突变可说是“静止的”。由于三核苷酸扩增突变不同于此,所以称之为动态突变(dynamic mutation)。动态突变也可称为基因组不稳定性(genomic instability)。
补充:
动态突变最初是在与人类神经系统疾病相关的基因中发现的。在动态突变与疾病相关的研究中,发现扩增的重复序列是不稳定地传递给下一代,往往倾向于增加几个重复拷贝;重复拷贝数越多,病情越严重,发病年龄越小,这种现象称为遗传早现(anticipation)。不仅是与神经系统遗传性疾病相关基因中有三核苷酸拷贝数扩增,在一些与发育有关的基因中同样也有此现象。例如,与常染色体显性遗传的多趾相关的HOXDl3蛋白的N端,丙氨酸的重复数从正常的15个增加到22个以上。研究过的三个家系中分别为22、23和25个,但编码的密码子可以是GCG、GCA、GCT和GCC。三核苷酸扩增突变与基因的显隐性也有关系,但其机制仍不清楚。如上面提到的人类的眼咽肌营养不良症(OPMD)基因是位于14 q11,当编码N端多聚丙氨酸的密码子GCG从正常的6份拷贝增加到8~13份拷贝时,呈常染色体显性遗传;可是,当(GCG)7/(GCG)7纯合子时,则表现为常染色体隐性遗传;而(GCG)7/(GCG)9杂合子则症状特别严重。(GCG)7在人群中约占2%。
4、血红蛋白病:
血红蛋白病(hemoglobinopathy)是由于血红蛋白分子结构异常(异常血红蛋白病),或珠蛋白肽链合成速率异常(珠蛋白生成障碍性贫血,又称海洋性贫血)所引起的一组遗传性血液病。临床可表现溶血性贫血、高铁血红蛋白血症或因血红蛋白氧亲和力增高或减低而引起组织缺氧或代偿性红细胞增多所致紫绀。
http://www.jkonline.cn/rescenter/disease/detail.php?id=1079
3. 遗传的名词解释释
亲子之间以及子代个体之间性状存在相似性,表明性状可以从亲代传递给子代,这种现象称为遗传(heredity)。
遗传学是研究此一现象的学科,
目前已知地球上现存的生命主要是以DNA作为遗传物质。
4. 遗传学名词解释
遗传学(Genetics)——研究生物的遗传与变异的科学,研究基因的结构、功能及其变异、传递和表达规律的学科。遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到脱氧核糖核酸(也就是DNA)的复制甚至mRNA的转录,这些是分子遗传学研究的课题。
5. 遗传学名词解释cit/phe
phe:苯丙氨酸
6. 名词解释遗传学,遗传,变异
遗传学:(Genetics)--自然科学领域中探究生物遗传和变异规律的的科学。
遗传:一般是内指亲容子之间以及子代个体之间性状存在相似性,表明性状可以从亲代传递给子代,这种现象称为遗传(heredity)。遗传学是研究此一现象的学科。
变异:是生物繁衍后代的自然现象,是遗传的结果。亲子之间以及子代个体之间性状表现存在差异的现象称为变异。
7. 名词解释 遗传
遗传][yí chuán]释义:
1.通过细胞染色体由祖先向后代传递的品质 2.先人所流传下来的