当前位置:首页 » 遗传因素 » 数学实验遗传算法

数学实验遗传算法

发布时间: 2021-03-25 21:10:17

㈠ 什么叫遗传算法,遗传算法有什么用希望通俗一点儿

首先有个很神奇的现象:人类以及动物的进化都是朝着好的方向发展,虽然有的往坏的方向发展了,但是总体肯定是往好的方向发展。这看似不奇怪,但是我们知道,人类的基因组合是随机的,没有上帝约束。这种随机过程的结果却是一致的!!!!!我们的遗传算法就是从这里得到启发!比如我要求y=x1+x2的最大值,两个变量,我不用传统的数学方法,就用幼儿园的方法,把所有可能取值带进去算,然后找出最大的就行了!但是,有时候取值是连续的,没关系!使其离散化,就像把模拟信号化成数字信号一样!还有个问题,如果取值太多咋办?这就是遗传算法的精髓!
首先,我不用取所有可能取值,我只取几十个或者几百个(自己定),然后进行处理,怎样处理呢?让我们回到刚开始的人类进化问题,虽然没有上帝的帮忙,但是我们知道,自然界遵循优胜劣汰的发贼,遵循交叉变异的法则,虽然不能数字化,但是这是个趋势!我们就是把这种法则数学化!所取的几十个值我要剩下哪些?要抛弃哪些?要处理哪些?这都要我们自己选择,肯定是选择最合适的取值留下,经过一系列的处理,就生成了新的群体,然后再处理,自己约定处理到第几次就可以了,取出现过的最大值
不用担心取到的是不是最大值,因为数学上已经有了证明,这种方法是收敛的,概率是1,所以尽管放心的做,具体的做法要参考相关书籍,不难的。
遗传算法的最大用处就是解决数学理论不能解决的问题!比如路径规划,调度问题……

㈡ 遗传算法是一种算法还是一种模型 关于数学建模的

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

㈢ 遗传算法在数学上的应用

应用遗传算法搜索边坡最小安全系数的研究
陆峰 陈祖煜 李素梅
(中国水利水电科学研究院结构材料所)

提 要
本文简要介绍了滑坡滑裂面搜索问题和遗传算法,并试用遗传进化算法从边坡任意形状滑裂面组合中搜索最有可能的滑裂面,也就是使安全系数最小的滑裂面。作为实例,分析了遗传算法在天生桥二级电站首部枢纽进水口右岸滑坡分析中的应用。

关键词 边坡;安全系数;遗传算法;EMU程序。

1.前言

在应用条分法进行边坡稳定分析的过程中,从可能的滑裂面集合中确定相应最小安全系数的临界滑裂面是很关键的一步。这是一个确定安全系数这个泛函对滑裂面形状这个自变函数的极小值问题。由于实际情况的复杂性,求这一极小值的解析方法很难付诸实施。从实用角度出发,基于最优化原理发展起来的求边坡最小安全系数的方法是比较有效而且便于应用。这些方法有"穷举法"、"黄金分割法"、"鲍威尔法"等,但它们都只能应用于圆弧形滑裂面或圆弧-直线形(改良圆弧法)滑裂面的情形。对于比较符合岩质边坡的具有多个自由度的折线形滑裂面情形,孙君实用复形法取得较好的效果;陈祖煜提出了单纯形法,使最优化方法搜索边坡最危险滑裂面更加有效,且不会漏掉可能的最小值。单纯形法程序已在国内外多家工程、科研和教育单位得到应用,并不断随着应用工程案例数量的增加而不断完善[1]。单纯形法使最优化方法应用于岩质边坡稳定性分析的研究和应用前进了一大步。同为最优化方法,遗传算法是最近发展起来的一种仿生寻优算法。国内外已有一些学者试图将遗传算法应用于搜索安全系数最小的边坡滑裂面,以期获得更优的结果。文献[2]将此算法应用于基于圆弧滑裂面假定的任意形状坡面的非均质土坡情况,搜索的目标是使边坡安全系数最小的圆弧滑裂面圆心和半径。本文将在文献[1]和文献[2]的基础上,应用遗传算法搜索边坡安全系数最小的任意形状滑裂面,根据工程实践经验,主要是折线组合的滑裂面。 2.遗传算法及其应用于岩土工程的基础

如前所述,搜索边坡最危险滑裂面问题是安全系数对滑裂面形状的泛函极值问题。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。
生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法(GA)。算法中称遗传的生物体为个体(indivial),个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因(gene)。一定数量的个体组成一个群体(population)。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代(new generation)。
遗传算法计算程序的流程可以表示如下[3]:
第一步 准备工作
(1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。
(2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。
(3)确定适应值函数f(x)。f(x)应为正值。
第二步 形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。
第三步 对每一染色体(串)计算其适应值fi,同时计算群体的总适应值 。
第四步 选择
计算每一串的选择概率Pi=fi/F及累计概率 。选择一般通过模拟旋转滚花轮(roulette,其上按Pi大小分成大小不等的扇形区)的算法进行。旋转M次即可选出M个串来。在计算机上实现的步骤是:产生[0,1]间随机数r,若r<q1,则第一串v1入选,否则选v2,使满足qi-1<r<qi(2≤i≤m)。可见适应值大的入选概率大。
第五步 交叉
(1) 对每串产生[0,1]间随机数,若r>pc,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。
(2) 对每一对,产生[1,m]间的随机数以确定交叉的位置。
第六步 变异
如变异概率为Pm,则可能变异的位数的期望值为Pm ×m×M,每一位以等概率变异。具体为对每一串中的每一位产生[0,1]间的随机数r,若r<Pm,则该位发生反转,如对染色体二进制编码为数字0变为1,1变为0。
如新个体数达到M个,则已形成一个新群体,转向第三步;否则转向第四步继续遗传操作。直到找到使适应值最大的个体或达到最大进化代数为止。
由于选择概率是由适应值决定的,即适应值大的染色体入选概率也较大,使选择起到"择优汰劣"的作用。交叉使染色体交换信息,结合选择规则,使优秀信息得以保存,不良信息被遗弃。变异是基因中得某一位发生突变,以达到产生确实有实质性差异的新品种。遗传算法虽是一种随机算法,但它是有导向的,它所使用的"按概率随机选择"方法是在有方向的搜索方法中的一种工具。正是这种独特的搜索方法,使遗传算法自然地避开了其它最优化算法常遇到的局部最小陷阱。遗传算法搜索最优结果的效果在数学上还没有严格的证明,但它的有效性已在许多专业的应用的得到体现。对于岩质边坡安全系数对滑裂面形状这样不可微的泛函极值问题,就目前的科学认识水平来讲,遗传算法不失为一种可以信赖的方法。 3.用遗传算法搜索安全系数最小的边坡任意形状滑裂面

在边坡(尤其是岩质边坡)最危险滑裂面搜索问题中,滑裂面的实际形状是很复杂的,起控制作用的是岩体的主要结构面和边坡的体型。从以往实际工程经验看,可以总结出岩质边坡滑裂面在顺滑方向上的剖面形状为折线,由岩体结构面和局部岩土材料的剪切破坏面连接而成。这样,搜索最危险滑裂面的问题就可以简化为从折线滑裂面组合中寻优的问题。本文用遗传进化算法解决这个问题。
(1) 定义遗传算法的目标函数
目标函数定义为边坡的安全系数,用安全系数的大小表示解的适应值。在边坡最危险滑裂面搜索问题中,解的安全系数越小,适应性能越好。
(2) 初始群体的确定
根据边坡的工程地质调查记录,根据经验初步拟定出一批滑裂面形状。如图1所示,滑裂面由点序列Ai(xi,yi)(i=1,?,N)表示。将点序列AI的坐标(xi,yi)依次排列成x1y1x2y2?xNyN的形式,经二进制编码形成一条染色体。对于拟定的滑裂面形状,其对应的安全系数用EMU程序[4]进行计算。
(3) 确定搜索范围
根据经验对每个点Ai,确定其坐标(xi,yi)的可能变化范围。在此范围内搜索导致最小安全系数的边坡滑裂面形状。
(4) 计算
将初始种群的所有拟定滑裂面形状(染色体)交给遗传算法程序进行计算。具体过程参见前文。

4.算例分析[4]

图1 天生桥二级电站首部枢纽进水口右岸滑坡示意图

选用天生桥二级电站首部枢纽进水口右岸滑坡作为算例,图1为其计算简图。滑坡高约30m,总方量为7000余m3,主要为第四系冲坡积物和施工堆碴。物理力学参数见表1。

表1 各土层物理力学性能指标
土层 密度(g/cm3) 抗剪强度指标
内摩擦角 凝聚力(kPa)
① 施工弃碴 1.85 21.8° 19.6
② 坡积土 1.85 21.8° 0.0
③ 砂土 1.85 21.8° 29.4
④ 砂质淤泥 1.85 20.8° 34.3
⑤ 河卵石、砾石 1.90 24.2° 0.0

滑坡发生前,靠近坡脚处因修建挡土墙被开挖而削弱边坡的整体稳定性,可以断定滑坡的滑裂面将从此经过。本例题还将忽略实际工程中坡顶张裂缝的影响。选用5个点的折线来模拟滑裂面形状,初步确定AiBiCiDiE(i=1~4)为可能的滑裂面。滑裂面上端点Ai的y坐标已受限制,下端点E的x、y坐标均已确定,故滑裂面只有7个自由度。按遗传算法的要求将滑裂面表示成如下形式:
xAxByBxCyCxDyD
四个模拟滑裂面的坐标和由EMU程序分析的安全系数列于表2。
表2 模拟滑裂面坐标及安全系数(坐标单位 m)
滑裂面 xA xB yB xC yC xD yD 安全系数
A1B1C1D1E 35.44 27.69 16.82 18.79 9.25 11.39 4.49 0.92
A2B2C2D2E 38.15 30.60 20.69 23.14 14.60 14.12 8.37 0.99
A3B3C3D3E 39.02 34.18 18.47 26.28 10.41 16.07 4.58 1.02
A3B3C4D4E 39.02 34.18 18.47 25.12 11.39 14.70 4.97 1. 03

限制搜索范围为每个自由度可在2.0m范围内变化。将4个排列好的数字串作为输入数据交给遗传算法程序进行编码、计算。经过大量运算,最后在最大种群代数(1000)群体中找到使安全系数最小的坐标数字串,经译码形成如下坐标:
(36.89,30.07)(33.25,21.52)(21.71,9.34)(13.54,5.07)(0.0,0.0)
即为图1中的ABCDE滑裂面。由遗传算法求出其相应的安全系数为0.90。滑裂面形式和安全系数都比较接近实际情况。

5.结语

遗传算法是一种高效的寻优算法,而且能有效地解决局部最小问题、非线性映射关系的表示、非线性映射关系不可微等普通优化算法常遇到的问题。算例的成果证明了这一特点。将遗传算法应用于滑坡滑裂面搜索问题,主要的工作是将工程问题简化成遗传算法需要的形式,简化时需详细参考地质调查资料和工程经验,务使简化的形式接近实际情况。对于简化的搜索样本,其安全系数的计算必须可靠,为此可应用一些比较成熟的计算程序,如EMU等。充分考虑实际工程地质情况和选取切合实际的搜索样本后,遗传算法程序必将能为滑坡搜索出最有可能的滑裂面。

参考文献

1 陈祖煜,邵长明,最优化方法在确定边坡最小安全系数方面的应用,岩土工程学报,Vol.10, No.4, 1998.7。
2 肖专文,张奇志,梁力,林韵梅,遗传进化算法在边坡稳定性分析中的应用,岩土工程学报,Vol.20, No.1, 1998.1。
3 周明,孙树栋,遗传算法原理及应用,国防工业出版社,1999.6。
4 陈祖煜,岩质高边坡稳定分析程序EMU,1995.5。

Research on Searching Least Factor of Safety of Slopes with Genetic Algorithm

Lu Feng Chen Zuyu Li Sumei
(Department of Structure and Material, IWHR)

Abstract

The problem of searching least factor of safety of slopes and the theory of Genetic Algorithm have been introced in this paper. This theory has been employed to solve this problem to find the most possible slide of slopes. As an example, the application of genetic algorithm on the Tianshengqiao Power Station Right Bank Slide has been presented.

Keywords: Slope, Factor of Safety, Genetic Algorithm, EMU Program.

㈣ 什么是遗传算法实值变量

1.2 遗传算法的原理
遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。
一、遗传算法的目的
典型的遗传算法CGA(Canonical Genetic Algorithm)通常用于解决下面这一类的静态最优化问题:
考虑对于一群长度为L的二进制编码bi,i=1,2,…,n;有
bi∈{0,1}L (3-84)
给定目标函数f,有f(bi),并且
0<f(bi)<∞
同时
f(bi)≠f(bi+1)
求满足下式
max{f(bi)|bi∈{0,1}L} (3-85)
的bi。
很明显,遗传算法是一种最优化方法,它通过进化和遗传机理,从给出的原始解群中,不断进化产生新的解,最后收敛到一个特定的串bi处,即求出最优解。二、遗传算法的基本原理
长度为L的n个二进制串bi(i=1,2,…,n)组成了遗传算法的初解群,也称为初始群体。在每个串中,每个二进制位就是个体染色体的基因。根据进化术语,对群体执行的操作有三种:
1.选择(Selection)
这是从群体中选择出较适应环境的个体。这些选中的个体用于繁殖下一代。故有时也称这一操作为再生(Reproction)。由于在选择用于繁殖下一代的个体时,是根据个体对环境的适应度而决定其繁殖量的,故而有时也称为非均匀再生(differential reproction)。
2.交叉(Crossover)
这是在选中用于繁殖下一代的个体中,对两个不同的个体的相同位置的基因进行交换,从而产生新的个体。
3.变异(Mutation)
这是在选中的个体中,对个体中的某些基因执行异向转化。在串bi中,如果某位基因为1,产生变异时就是把它变成0;反亦反之。
遗传算法的原理可以简要给出如下:
choose an intial population
determine the fitness of each indivial
perform selection
repeat
perform crossover
perform mutation
determine the fitness of each indivial
perform selection
until some stopping criterion applies
这里所指的某种结束准则一般是指个体的适应度达到给定的阀值;或者个体的适应度的变化率为零。
三、遗传算法的步骤和意义
1.初始化
选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。
通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。
2.选择
根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。
给出目标函数f,则f(bi)称为个体bi的适应度。以

(3-86)为选中bi为下一代个体的次数。
显然.从式(3—86)可知:
(1)适应度较高的个体,繁殖下一代的数目较多。
(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。
这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。
3.交叉
对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。
例如有个体
S1=100101
S2=010111
选择它们的左边3位进行交叉操作,则有
S1=010101
S2=100111
一般而言,交叉幌宰P。取值为0.25—0.75。
4.变异
根据生物遗传中基因变异的原理,以变异概率Pm对某些个体的某些位执行变异。在变异时,对执行变异的串的对应位求反,即把1变为0,把0变为1。变异概率Pm与生物变异极小的情况一致,所以,Pm的取值较小,一般取0.01-0.2。
例如有个体S=101011。
对其的第1,4位置的基因进行变异,则有
S'=001111
单靠变异不能在求解中得到好处。但是,它能保证算法过程不会产生无法进化的单一群体。因为在所有的个体一样时,交叉是无法产生新的个体的,这时只能靠变异产生新的个体。也就是说,变异增加了全局优化的特质。
5.全局最优收敛(Convergence to the global optimum)
当最优个体的适应度达到给定的阀值,或者最优个体的适应度和群体适应度不再上升时,则算法的迭代过程收敛、算法结束。否则,用经过选择、交叉、变异所得到的新一代群体取代上一代群体,并返回到第2步即选择操作处继续循环执行。
图3—7中表示了遗传算法的执行过程。

图3-7 遗传算法原理
1.3 遗传算法的应用
遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。
一、遗传算法的特点
1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。
这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。
2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。
由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。
3.遗传算法有极强的容错能力
遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。
4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。
这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。
5.遗传算法具有隐含的并行性
遗传算法的基础理论是图式定理。它的有关内容如下:
(1)图式(Schema)概念
一个基因串用符号集{0,1,*}表示,则称为一个因式;其中*可以是0或1。例如:H=1x x 0 x x是一个图式。
(2)图式的阶和长度
图式中0和1的个数称为图式的阶,并用0(H)表示。图式中第1位数字和最后位数字间的距离称为图式的长度,并用δ(H)表示。对于图式H=1x x0x x,有0(H)=2,δ(H)=4。
(3)Holland图式定理
低阶,短长度的图式在群体遗传过程中将会按指数规律增加。当群体的大小为n时,每代处理的图式数目为0(n3)。
遗传算法这种处理能力称为隐含并行性(Implicit Parallelism)。它说明遗传算法其内在具有并行处理的特质。
二、遗传算法的应用关键
遗传算法在应用中最关键的问题有如下3个
1.串的编码方式
这本质是问题编码。一般把问题的各种参数用二进制编码,构成子串;然后把子串拼接构成“染色体”串。串长度及编码形式对算法收敛影响极大。
2.适应函数的确定
适应函数(fitness function)也称对象函数(object function),这是问题求解品质的测量函数;往往也称为问题的“环境”。一般可以把问题的模型函数作为对象函数;但有时需要另行构造。
3.遗传算法自身参数设定
遗传算法自身参数有3个,即群体大小n、交叉概率Pc和变异概率Pm。
群体大小n太小时难以求出最优解,太大则增长收敛时间。一般n=30-160。交叉概率Pc太小时难以向前搜索,太大则容易破坏高适应值的结构。一般取Pc=0.25-0.75。变异概率Pm太小时难以产生新的基因结构,太大使遗传算法成了单纯的随机搜索。一般取Pm=0.01—0.2。
三、遗传算法在神经网络中的应用
遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。
1.遗传算法在网络学习中的应用
在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用
(1)学习规则的优化
用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。
(2)网络权系数的优化
用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。
2.遗传算法在网络设计中的应用
用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异操作得出最优结构。编码方法主要有下列3种:
(1)直接编码法
这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。
(2)参数化编码法
参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。
(3)繁衍生长法
这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。
3.遗传算法在网络分析中的应用
遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。
遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等

㈤ 做数学建模用到的遗传算法,难不难,要怎么学要不要用专门的工具箱

要看你用遗传算法解决什么问题,一般情况下,有两个方向使用遗传算法,一是自己编写遗传算法代码解决问题,二是用Matlab遗传算法工具箱。前者可以学习王小平的《遗传算法——理论、应用与软件实现》这本书,后者可以学习 雷英杰的《MATLAB遗传算法工具箱及应用》这本书,网上都可以找到电子版。
你要是用遗传算法解决旅行商问题这样的组合优化问题,建议你自己编码实现吧,网上可以找到很多代码参考。

㈥ 关于遗传算法,模糊数学,神经网络三种数学的区别和联系

遗传算法是一种智能计算方法,针对不同的实际问题可以设计不同的计算程序。它主要有版复权制,交叉,变异三部分完成,是仿照生物进化过程来进行计算方法的设计。
模糊数学是研究现实生活中一类模糊现象的数学。简单地说就是像好与坏怎样精确的描述,将好精确化,用数字来表达。
神经网络是一种仿生计算方法,仿照生物体中信息的传递过程来进行数学计算。
这三种知识都是近40年兴起的新兴学科,主要应用在智能模糊控制上面。这三者可以结合起来应用。如用模糊数学些遗传算法的程序,优化神经网络,最后用神经网络控制飞行器或其他物体

㈦ 关于遗传算法选择概率的和的计算过程——数学达人请进!

首先y=x*x在[0,31]这个函数的极值是取31的时候,用遗传算法来解答这样的问题是内有点多余容的。遗传算法的主要步骤是4步,初始化种群,选择,交叉,变异。这里说的淘汰函数,很可能就是在选择选择算子,这个算子是根据最适合最优先的算法来实现。举个简单的例子,你要用数字进行遗传算法,肯定得把他转化为2进制的染色体,【0-31】就是从00000-11111,每条染色体5个基因。对于选择运算来说,每次要从种群选择最优的几个,第一次完全是随机的。假如随机选4个染色体,选的4条染色体是1,2,3,4。很明显他们的值是1,4,9,16,总和是30,那么选择4的概率就是30分之16,这样就可以尽可能的选择大的数值。这里的淘汰域3,可能是每次淘汰3条染色体,或者每次只选择3条最优的染色体,视其选择的条数而定。我看在程序里没有用到这个东西。遗传算法以及进化算法不限定于特殊的程序,每个人有不同的理解,不必拘泥于概念。

㈧ 遗传算法的数学基础的介绍

遗传算法的数学基础由张文修、梁怡编著,是一本重点在于阐述遗传算法的数学基础的书籍。

热点内容
法国电影小男孩在农场遇到一只白狗 发布:2024-08-19 08:36:47 浏览:594
微光上有什么恐怖片 发布:2024-08-19 05:25:40 浏览:915
穿越香港鬼片灭鬼的小说 发布:2024-08-19 03:36:10 浏览:833
恶之花都敏秀姐姐扮演者 发布:2024-08-19 02:22:07 浏览:321
thai好看电影 发布:2024-08-18 11:34:37 浏览:795
电影内容女的是傻子容易尿裤子,男的很穷单身汉 发布:2024-08-18 10:31:36 浏览:129
双机巨幕厅和4k厅哪个好 发布:2024-08-18 10:18:41 浏览:818
日本僵尸片上世纪 发布:2024-08-18 07:32:00 浏览:537
怪物 韩国电影在线 发布:2024-08-18 03:49:17 浏览:491
第九区一样的 发布:2024-08-17 23:16:05 浏览:528