当前位置:首页 » 遗传因素 » 高级分子遗传学

高级分子遗传学

发布时间: 2021-03-25 20:46:10

⑴ 经典遗传学和分子遗传学关于基因的概念有何不同

经典遗传学认为基因是一个最小的单位,不能分割,既是结构单位,又是功能单位。
分子遗传学认为,基因是能够编码蛋白质的DNA序列。

⑵ 高中就分子遗传学会怎么考

高中那玩意也能叫“分子遗传学”?

⑶ 《分子遗传学》txt全集下载

分子遗传学 txt全集小说附件已上传到网络网盘,点击免费下载:

内容预览:
您下载的该电子书来自:TXT书库
进入二十世纪八十年代以来,分子生物学对现代科学的影响已遍及生物学的每一个领 域,遗传学更是首当其中。1980年,美国科学家Bohtein首次提出利用DNA限制性片 段长度的多态性作为一种新的遗传标记来构建遗传连锁图谱。随后以美国的人类基因组计 划为先导,在世界范围内兴起了生物基因组研究的热渐。分子标记技术的发展及基因组计 划的实施正在对遗传学的各个领域产生重大而深远的影响。所导致的变革之一就是促使过 去相互分隔的两个通传学领域,分子遗传学和数量遗传学,发生交叉和融汇,正在发展形 成一个崭新的遗传学分支学科一一分子数量遗传学。本书的目的是向读者简要地介绍分 子数量遗传学的形成和发展及其有关的基本原理和应用。
分子数置遗传学的基本理论既涉及包含许多数理统计原理的数量遗传学,又涉及迄今 为止分子生物学领域所发展的新技术和新方法。同时,基本理论的应用又与数貴性状的改 良密切相关。因此,我们编写此书的目的之二是在分子遗传学、数量遗传学及遗传育种三 个领域的科学工作者之间架起一座可以相互联系的纽带和桥梁,以增逬不同领域袢学工作 者之间的理解和合作。这不仅是现代分子生物学发展的需要,也是使数童性状遗传改良迈 上新台阶的基础。
尽管目前国际上还没有与本书相类似的版本供参考,但我们感到分子遗传学与数跫遗 传相结合并带动生物遗传育种的革命是学科发展的必然。近几年,国内许多……
以上

⑷ 分子遗传学的分子遗传学

1、DNA和RNA的提取:人体组织细胞在含有SDS的溶液中,用蛋白酶K消化分解蛋白质,然后用酚和氯仿抽提,用乙醇沉淀DNA。也可用离子交换树脂快速提取DNA。
2、Southern印迹杂交分析:这是一种常用的DNA分子遗传学研究技术,由英国科学家Southem发明而命名的。可用于测定特异基因内及周围的多态性或其突变点。可检测由突变、插入或缺失所引起的基因异常。
3、DNA多态性:DNA区域中等位基因存在两种或两种以上形式,对基因功能没有影响,称为多态性。DNA序列中大约有1/100—200的碱基存在多态现象。根据人类DNA的多态性可以检测人体细胞中遗传因素的微细变化。
4、多聚酶链反应(PCR):一种通过酶作用,在体外迅速合成DNA序列的方法。可在体外迅速而大量地扩增被选定的一定长度的DNA序列。PCR的产物纯度较高,可直接用电泳法显示和回收。这是分子生物学中的一项突破性技术。
5、DNA序列测定:测定DNA序列有两种方法:一种是DNA的化学降解法,另一种是DNA合成法。两种方法都有一系列DNA分子生成,这些DNA分子的长度仅差一个碱基,可经聚丙烯凝胶电泳分离,在凝胶上形成带梯。
6、DNA芯片测定:标记的cDNA探针与定点于固相表面呈几何组列分布的寡核苷酸产生高度专一的杂交,可以进行不同细胞群中个别基因表达的评估,以及基因功能群的分析。预期DNA芯片技术的进一步发展和扩大应用,会对遗传学异常之快速诊断和治疗效果的判别产生积极的变革作用。

⑸ 您好,想请教您一个分子遗传学的问题,如下:

  1. 1)由于高杆对于矮杆是显性的,所以经诱变产生的高杆个体基因型可能是AA或Aa(其实更可能是Aa,因为突变的概率较低,从隐性纯合直接突变到线性纯合的概率更低)

    用突变体与隐性纯合个体测交,若F1全部高杆,F1自交的F2出现3:1的分离比,则是AA

    若测交结果是,F1分离比1:1,用其中的高杆个体自交的F2分离比3:1,则是Aa

    若测交结果不符合上述结果,则可能不是基因突变

    2)以上是遗传学经典方法,但是更可靠的是利用现代分子生物学技术奖该基因克隆出来,直接和野生型的该基因比对一下,就可以确定是否发生了基因突变,但关键的是怎么把这个基因克隆出来,将在第二问中说明

  2. 1)高技术方案:最可靠的方法是对野生型隐性纯合水稻和突变的高杆水稻分别进行全基因组测序,然后进行比对确定突变位点,确定了位点之后找到其结构基因的序列,然后设计引物进行RT-PCR克隆其基因

    2)中技术方案:从各大数据库中搜索与水稻株高控制相关的基因,将相关的基因分别设计引物克隆出来,检查有没有SNP;或者用核酸探针杂交,或用基因芯片进行高通量测定,找到突变的基因。最后依然是设计引物克隆之。

    3)中技术方案:由于突变之后蛋白的表达量,分子量,等电点都可能会发生变化,可以做蛋白二维凝胶电泳,找出表达谱的差异点,对差异的蛋白测序,根据其可能N端C端氨基酸序列设计若干种可能的引物,对其基因组进行实时定量PCR,检测扩增条带中有无编码该蛋白的结构基因。随后用同一引物进行克隆扩增。

  3. 如果只是要验证该基因对于株高控制方面的功能,那就种植突变株和野生植株做对照就行了

    但如果是验证该基因的作用机理,那就稍麻烦一些了

    若是真的验证出来了,那可以发相当好的文章了

希望对你有帮助,以上个人意见,非正确答案,仅供参考,望采纳

⑹ 介绍分子遗传学的书谁写的最好籍

一般用的教材是《遗传学》(第二版)戴灼华,王亚馥,粟翼玟主编,高等教育出版社。


刘祖洞的《遗传学》中关于遗传学计算分析得很透彻,作为遗传学上册的参考书。

⑺ 分子遗传学的研究方法

用遗传学方法可以得到一系列使某一种生命活动不能完成的突变型,例如不能合成某一种氨基酸的突变型、不能进行 DNA复制的突变型、不能进行细胞分裂的突变型、不能完成某些发育过程的突变型、不能表现某种趋化行为的突变型等。正象40年代中在粗糙脉孢菌中利用不能合成某种氨基酸的突变型来研究这一种氨基酸的生物合成途径一样,也可以利用上述种种突变型来研究 DNA复制、细胞分裂、发生过程和趋化行为等。不过许多这类突变型常是致死的,所以各种条件致死突变型特别是温度敏感突变型常是分子遗传学研究的重要材料。
在得到一系列突变型以后,就可以对它们进行遗传学分析,了解这些突变型代表几个基因,各个基因在染色体上的位置,这就需要应用互补测验(见互补作用、基因定位),包括基因精细结构分析等手段。 抽提、分离、纯化和测定等都是分子遗传学中的常用方法。在对生物大分子和细胞的超微结构的研究中还经常应用电子显微镜技术。对于分子遗传学研究特别有用的技术是顺序分析、分子杂交和重组DNA技术。核酸和蛋白质是具有特异性结构的生物大分子,它们的生物学活性决定于它们的结构单元的排列顺序,因此常需要了解它们的这些顺序。如果没有这些顺序分析,则基因DNA和它所编码的蛋白质的线性对应关系便无从确证;没有核酸的顺序分析,则插入顺序或转座子两端的反向重复序列的结构和意义便无从认识(见转座因子),重叠基因(见基因)也难以发现。
DNA分子的两个单链具有互补结构,DNA和通过转录产生的mRNA之间也具有互补结构。凡具有互补结构的分子都可以形成杂种分子,测定杂种分子的形成的方法便是分子杂交方法。分子杂交方法可以用来对DNA和由DNA转录的RNA进行鉴定和测量。它的应用范围很广泛,例如用来测定两种生物的DNA的总的相似程度,某一mRNA分子从DNA的哪一部分转录等。
重组DNA技术的主要工具是限制性核酸内切酶和基因载体(质粒和噬菌体)。通过限制性内切酶和连接酶等的作用,可以把所要研究的基因和载体相连接并引进细菌细胞,通过载体的复制和细菌的繁殖便可以取得这一基因DNA的大量纯制品,如果这一基因得以在细菌中表达,还可以获得这一基因所编码的蛋白质。这对于分子遗传学研究是一种十分有用的方法。此外,在取得某一个基因以后,还可以在离体条件下通过化学或生物化学方法使它发生预定的结构改变,然后再把突变基因引入适当的宿主细胞,这一方法有助于对特定基因的结构和功能的研究。
和其他学科的关系 分子遗传学是从微生物遗传学发展起来的。虽然分子遗传学研究已逐渐转向真核生物方面,但是以原核生物为材料的分子遗传学研究还占很大的比重。此外,由于微生物便于培养,所以在分子遗传学和重组DNA技术中微生物遗传学的研究仍将占有重要的位置。
分子遗传学方法还可以用来研究蛋白质的结构和功能。例如可以筛选得到一系列使某一蛋白质失去某一活性的突变型。应用基因精细结构分析可以测定这些突变位点在基因中的位置;另外通过顺序分析可以测定各个突变型中氨基酸的替代,从而判断蛋白质的哪一部分和特定的功能有关,以及什么氨基酸的替代影响这一功能等等。例如乳糖操纵子的调节基因产物是一种既能和操纵基因 DNA结合又能和乳糖或其他诱导物结合的阻遏蛋白。分子遗传学研究结果说明阻遏蛋白的氨基端的60个氨基酸和DNA的结合有关,其余部分和诱导物的结合有关,而且还说明这一部分蛋白质呈β片层结构,片层结构的顶端暴露部分最容易和诱导物相结合。麦芽糖结合蛋白的信号序列、λ噬菌体的阻遏蛋白等的结构和功能问题也都曾用分子遗传学方法进行研究而取得有意义的结果。目前基因分离和DNA顺序分析方法进展迅速,而一些以微量存在的蛋白质却难以分离纯化。在这种情况下,根据DNA 顺序分析结果和遗传密码表便可以得知这一蛋白质分子的氨基酸顺序。
生物进化的研究过去着眼于形态方面的演化,以后又逐渐注意到代谢功能方面的演变。自从分子遗传学发展以来又注意到 DNA的演变、蛋白质的演变、遗传密码的演变以及遗传机构包括核糖体和tRNA等的演变。通过这些方面的研究,对于生物进化过程将会有更加本质性的了解(见分子进化)。
分子遗传学也已经渗入到以个体为对象的生理学研究领域中去,特别是对免疫机制和激素的作用机制的研究。随着克隆选择学说的提出,目前已经确认动物体的每一个产生抗体的细胞只能产生一种或者少数几种抗体,而且已经证明这些细胞具有不同的基因型。这些基因型的鉴定和来源的探讨,以及免疫反应过程中特定克隆的选择和扩增机制等既是免疫遗传学也是分子遗传学研究的课题。
将雌性激素注射雄鸡,可以促使雄鸡的肝脏细胞合成卵黄蛋白。这一事实说明雄鸡和雌鸡一样,在肝脏细胞中具有卵黄蛋白的结构基因,激素的作用只在于激活这些结构基因。激素作用机制的研究也属于分子遗传学范畴,属于基因调控的研究。
个体发生过程中一般并没有基因型的变化,所以发生问题主要是基因调控问题,也属于分子遗传学研究范畴。
分子遗传学研究的方法,特别是重组DNA技术已经成为许多遗传学分支学科的重要研究方法。分子遗传学也已经渗入到许多生物学分支学科中。以分子遗传学为基础的遗传工程则正在发展成为一个新兴的工业生产领域。

⑻ 分子遗传学的发展简史

1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。
1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。
关于基因突变方面,早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。
美国遗传学家比德尔和美国生物化学家塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设,它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。
按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从DNA向蛋白质分子转移。前一问题是遗传密码问题,后—问题是蛋白质生物合成问题,这又涉及转录和翻译、信使核糖核酸(mRNA)、转移核糖核酸(tRNA)和核糖体的结构与功能的研究。这些分子遗传学的基本概念都是在20世纪50年代后期和60年代前期形成的。
分子遗传学的另一重要概念——基因调控在1960~1961年由法国遗传学家莫诺和雅各布提出。他们根据在大肠杆菌和噬菌体中的研究结果提出乳糖操纵子模型。接着在1964年,又由美国微生物和分子遗传学家亚诺夫斯基和英国分子遗传学家布伦纳等,分别证实了基因的核苷酸顺序和它所编码的蛋白质分子的氨基酸顺序之间存在着排列上的线性对应关系,从而充分证实了一个基因一种酶假设。此后真核生物的分子遗传学研究逐渐开展起来。
用遗传学方法可以得到一系列使某一种生命活动不能完成的突变型,例如不能合成某一种氨基酸的突变型、不能进行DNA复制的突变型、不能进行细胞分裂的突变型、不能完成某些发育过程的突变型、不能表现某种趋化行为的突变型等。不过许多这类突变型常是致死的,所以各种条件致死突变型,特别是温度敏感突变型常是分子遗传学研究的重要材料。
在得到一系列突变型以后,就可以对它们进行遗传学分析,了解这些突变型代表几个基因,各个基因在染色体上的位置,这就需要应用互补测验,包括基因精细结构分析等手段。
抽提、分离、纯化和测定等都是分子遗传学中的常用方法。在对生物大分子和细胞的超微结构的研究中还经常应用电子显微镜技术。对于分子遗传学研究特别有用的技术是顺序分析、分子杂交和重组DNA技术。
核酸和蛋白质是具有特异性结构的生物大分子,它们的生物学活性决定于它们的结构单元的排列顺序,因此常需要了解它们的这些顺序。如果没有这些顺序分析,则基因DNA和它所编码的蛋白质的线性对应关系便无从确证;没有核酸的顺序分析,则插入顺序或转座子两端的反向重复序列的结构和意义便无从认识,重叠基因也难以发现。
分子遗传学是从微生物遗传学发展起来的。虽然分子遗传学研究已逐渐转向真核生物方面,但是以原核生物为材料的分子遗传学研究还占很大的比重。此外,由于微生物便于培养,所以在分子遗传学和重组DNA技术中,微生物遗传学的研究仍将占有重要的位置。
分子遗传学方法还可以用来研究蛋白质的结构和功能。例如可以筛选得到一系列使某一蛋白质失去某一活性的突变型。应用基因精细结构分析可以测定这些突变位点在基因中的位置;另外通过顺序分析可以测定各个突变型中氨基酸的替代,从而判断蛋白质的哪一部分和特定的功能有关,以及什么氨基酸的替代影响这一功能等等。
生物进化的研究过去着眼于形态方面的演化,以后又逐渐注意到代谢功能方面的演变。自从分子遗传学发展以来又注意到DNA的演变、蛋白质的演变、遗传密码的演变以及遗传机构包括核糖体和tRNA等的演变。通过这些方面的研究,对于生物进化过程将会有更加本质性的了解。
分子遗传学也已经渗入到以个体为对象的生理学研究领域中去,特别是对免疫机制和激素的作用机制的研究。随着克隆选择学说的提出,目前已经确认动物体的每一个产生抗体的细胞只能产生一种或者少数几种抗体,而且已经证明这些细胞具有不同的基因型。这些基因型的鉴定和来源的探讨,以及免疫反应过程中特定克隆的选择和扩增机制等既是免疫遗传学也是分子遗传学研究的课题。
将雌性激素注射雄鸡,可以促使雄鸡的肝脏细胞合成卵黄蛋白。这一事实说明雄鸡和雌鸡一样,在肝脏细胞中具有卵黄蛋白的结构基因,激素的作用只在于激活这些结构基因。
激素作用机制的研究也属于分子遗传学范畴,属于基因调控的研究。个体发生过程中一般并没有基因型的变化,所以发生问题主要是基因调控问题,也属于分子遗传学研究范畴。
分子遗传学研究的方法,特别是重组DNA技术已经成为许多遗传学分支学科的重要研究方法。分子遗传学也已经渗入到许多生物学分支学科中,以分子遗传学为基础的遗传工程则正在发展成为一个新兴的工业生产领域。

⑼ 分子遗传学的中心法则是什么

中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。

分子生物学的核心原理是阐述一系列信息的逐字传递。指出遗传信息不能从蛋白质传递到蛋白质或核酸。脱氧核糖核酸(DNA)或核糖核酸(RNA)分子中所含的功能性核苷酸序列称为遗传信息。遗传信息传递包括核酸分子间转移、核酸分子间转移和蛋白质分子间转移。

(9)高级分子遗传学扩展阅读

中心法则对探索生命现象的本质和普遍规律起着重要作用,极大地促进了现代生物学的发展,是现代生物学的理论基石,为生物学基础理论的统一指明了方向。它在发展过程中占有重要的地位。遗传物质可以是DNA,细胞的遗传物质都是DNA,只有一些病毒的遗传物质是RNA。

双链DNA可以成为宿主细胞基因组的一部分,并同宿主细胞的基因组一起传递给子细胞。在反转录酶催化下,RNA分子产生与其序列互补的DNA分子。

热点内容
法国电影小男孩在农场遇到一只白狗 发布:2024-08-19 08:36:47 浏览:594
微光上有什么恐怖片 发布:2024-08-19 05:25:40 浏览:915
穿越香港鬼片灭鬼的小说 发布:2024-08-19 03:36:10 浏览:833
恶之花都敏秀姐姐扮演者 发布:2024-08-19 02:22:07 浏览:321
thai好看电影 发布:2024-08-18 11:34:37 浏览:795
电影内容女的是傻子容易尿裤子,男的很穷单身汉 发布:2024-08-18 10:31:36 浏览:129
双机巨幕厅和4k厅哪个好 发布:2024-08-18 10:18:41 浏览:818
日本僵尸片上世纪 发布:2024-08-18 07:32:00 浏览:537
怪物 韩国电影在线 发布:2024-08-18 03:49:17 浏览:491
第九区一样的 发布:2024-08-17 23:16:05 浏览:528