当前位置:首页 » 遗传因素 » 遗传算法运算流程

遗传算法运算流程

发布时间: 2021-03-25 09:33:58

❶ 蚂蚁算法的思想进化公式及遗传算法的算法流程图

抄的
目前蚁群算法主要用在组合优化方面,基本蚁群算法的思路是这样的:
1. 在初始状态下,一群蚂蚁外出,此时没有信息素,那么各自会随机的选择一条路径。
2. 在下一个状态,每只蚂蚁到达了不同的点,从初始点到这些点之间留下了信息素,蚂蚁继续走,已经到达目标的蚂蚁开始返回,与此同时,下一批蚂蚁出动,它们都会按照各条路径上信息素的多少选择路线(selection),更倾向于选择信息素多的路径走(当然也有随机性)。
3. 又到了再下一个状态,刚刚没有蚂蚁经过的路线上的信息素不同程度的挥发掉了(evaporation),而刚刚经过了蚂蚁的路线信息素增强(reinforcement)。然后又出动一批蚂蚁,重复第2个步骤。
每个状态到下一个状态的变化称为一次迭代,在迭代多次过后,就会有某一条路径上的信息素明显多于其它路径,这通常就是一条最优路径。

关键的部分在于步骤2和3:
步骤2中,每只蚂蚁都要作出选择,怎样选择呢?
selection过程用一个简单的函数实现:
蚂蚁选择某条路线的概率=该路线上的信息素÷所有可选择路线的信息素之和
假设蚂蚁在i点,p(i,j)表示下一次到达j点的概率,而τ(i,j)表示ij两点间的信息素,则:
p(i,j)=τ(i,j)/∑τ(i)
(如果所有可选路线的信息素之和∑τ(i)=0,即前面还没有蚂蚁来过,概率就是一个[0,1]上的随机值,即随机选择一条路线)
步骤3中,挥发和增强是算法的关键所在(也就是如何数学定义信息素的)
evaporation过程和reinforcement过程定义了一个挥发因子,是迭代次数k的一个函数
ρ(k)=1-lnk/ln(k+1)
最初设定每条路径的信息素τ(i,j,0)为相同的值
然后,第k+1次迭代时,信息素的多少
对于没有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k),显然信息素减少了
有蚂蚁经过的路线:τ(i,j,k+1)=(1-ρ(k))τ(i,j,k)+ρ(k)/|W|,W为所有点的集合

为什么各个函数要如此定义,这个问题很难解释清楚,这也是算法的精妙所在。如此定义信息素的挥发和增强,以及路径选择,根据马尔可夫过程(随机过程之一)能够推导出,在迭代了足够多次以后,算法能够收敛到最佳路径。

❷ 遗传算法的运算过程

遗传操作是模拟生物基因遗传的做法。在遗传算法中,通过编码组成初始群体后,遗传操作的任务就是对群体的个体按照它们对环境适应度(适应度评估)施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度而言,遗传操作可使问题的解,一代又一代地优化,并逼近最优解。
遗传操作包括以下三个基本遗传算子(genetic operator):选择(selection);交叉(crossover);变异(mutation)。这三个遗传算子有如下特点:
个体遗传算子的操作都是在随机扰动情况下进行的。因此,群体中个体向最优解迁移的规则是随机的。需要强调的是,这种随机化操作和传统的随机搜索方法是有区别的。遗传操作进行的高效有向的搜索而不是如一般随机搜索方法所进行的无向搜索。
遗传操作的效果和上述三个遗传算子所取的操作概率,编码方法,群体大小,初始群体以及适应度函数的设定密切相关。 从群体中选择优胜的个体,淘汰劣质个体的操作叫选择。选择算子有时又称为再生算子(reproction operator)。选择的目的是把优化的个体(或解)直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的,目前常用的选择算子有以下几种:适应度比例方法、随机遍历抽样法、局部选择法。
其中轮盘赌选择法 (roulette wheel selection)是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i的适应度为,则i 被选择的概率,为遗传算法
显然,概率反映了个体i的适应度在整个群体的个体适应度总和中所占的比例。个体适应度越大。其被选择的概率就越高、反之亦然。计算出群体中各个个体的选择概率后,为了选择交配个体,需要进行多轮选择。每一轮产生一个[0,1]之间均匀随机数,将该随机数作为选择指针来确定被选个体。个体被选后,可随机地组成交配对,以供后面的交叉操作。 在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。
交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。根据编码表示方法的不同,可以有以下的算法:
a)实值重组(real valued recombination)
1)离散重组(discrete recombination)
2)中间重组(intermediate recombination)
3)线性重组(linear recombination)
4)扩展线性重组(extended linear recombination)。
b)二进制交叉(binary valued crossover)
1)单点交叉(single-point crossover)
2)多点交叉(multiple-point crossover)
3)均匀交叉(uniform crossover)
4)洗牌交叉(shuffle crossover)
5)缩小代理交叉(crossover with reced surrogate)。
最常用的交叉算子为单点交叉(one-point crossover)。具体操作是:在个体串中随机设定一个交叉点,实行交叉时,该点前或后的两个个体的部分结构进行互换,并生成两个新个体。下面给出了单点交叉的一个例子:
个体A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新个体
个体B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新个体 变异算子的基本内容是对群体中的个体串的某些基因座上的基因值作变动。依据个体编码表示方法的不同,可以有以下的算法:
a)实值变异
b)二进制变异。
一般来说,变异算子操作的基本步骤如下:
a)对群中所有个体以事先设定的变异概率判断是否进行变异
b)对进行变异的个体随机选择变异位进行变异。
遗传算法引入变异的目的有两个:一是使遗传算法具有局部的随机搜索能力。当遗传算法通过交叉算子已接近最优解邻域时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。显然,此种情况下的变异概率应取较小值,否则接近最优解的积木块会因变异而遭到破坏。二是使遗传算法可维持群体多样性,以防止出现未成熟收敛现象。此时收敛概率应取较大值。
遗传算法中,交叉算子因其全局搜索能力而作为主要算子,变异算子因其局部搜索能力而作为辅助算子。遗传算法通过交叉和变异这对相互配合又相互竞争的操作而使其具备兼顾全局和局部的均衡搜索能力。所谓相互配合.是指当群体在进化中陷于搜索空间中某个超平面而仅靠交叉不能摆脱时,通过变异操作可有助于这种摆脱。所谓相互竞争,是指当通过交叉已形成所期望的积木块时,变异操作有可能破坏这些积木块。如何有效地配合使用交叉和变异操作,是目前遗传算法的一个重要研究内容。
基本变异算子是指对群体中的个体码串随机挑选一个或多个基因座并对这些基因座的基因值做变动(以变异概率P.做变动),(0,1)二值码串中的基本变异操作如下:
基因位下方标有*号的基因发生变异。
变异率的选取一般受种群大小、染色体长度等因素的影响,通常选取很小的值,一般取0.001-0.1。 当最优个体的适应度达到给定的阈值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止。预设的代数一般设置为100-500代。

❸ 关于遗传算法选择概率的和的计算过程——数学达人请进!

首先y=x*x在[0,31]这个函数的极值是取31的时候,用遗传算法来解答这样的问题是内有点多余容的。遗传算法的主要步骤是4步,初始化种群,选择,交叉,变异。这里说的淘汰函数,很可能就是在选择选择算子,这个算子是根据最适合最优先的算法来实现。举个简单的例子,你要用数字进行遗传算法,肯定得把他转化为2进制的染色体,【0-31】就是从00000-11111,每条染色体5个基因。对于选择运算来说,每次要从种群选择最优的几个,第一次完全是随机的。假如随机选4个染色体,选的4条染色体是1,2,3,4。很明显他们的值是1,4,9,16,总和是30,那么选择4的概率就是30分之16,这样就可以尽可能的选择大的数值。这里的淘汰域3,可能是每次淘汰3条染色体,或者每次只选择3条最优的染色体,视其选择的条数而定。我看在程序里没有用到这个东西。遗传算法以及进化算法不限定于特殊的程序,每个人有不同的理解,不必拘泥于概念。

❹ 遗传算法的发展过程

遗传算法定义遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。 [编辑本段]遗传算法特点遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:
1、 遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际值本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。
2、 遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。
3、 遗传算法使用多个点的搜索信息,具有隐含并行性。
4、 遗传算法使用概率搜索技术,而非确定性规则。 [编辑本段]遗传算法的应用由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:
1、 函数优化。
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。
2、 组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。
此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。 [编辑本段]遗传算法的现状进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。
随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。
D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。
H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。 [编辑本段]遗传算法的一般算法遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:
创建一个随机的初始状态
初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
评估适应度
对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。
繁殖(包括子代突变)
带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。
下一代

如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。
并行计算

非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。
术语说明
由于遗传算法是由进化论和遗传学机理而产生的搜索算法,所以在这个算法中会用到很多生物遗传学知识,下面是我们将会用来的一些术语说明:
一、染色体(Chronmosome)
染色体又可以叫做基因型个体(indivials),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。
二、基因(Gene)
基因是串中的元素,基因用于表示个体的特征。例如有一个串S=1011,则其中的1,0,1,1这4个元素分别称为基因。它们的值称为等位基因(Alletes)。
三、基因地点(Locus)
基因地点在算法中表示一个基因在串中的位置称为基因位置(Gene Position),有时也简称基因位。基因位置由串的左向右计算,例如在串 S=1101 中,0的基因位置是3。
四、基因特征值(Gene Feature)
在用串表示整数时,基因的特征值与二进制数的权一致;例如在串 S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。
五、适应度(Fitness)
各个个体对环境的适应程度叫做适应度(fitness)。为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数. 这个函数是计算个体在群体中被使用的概率。 [编辑本段]遗传算法的运算过程选择(复制):
根据各个个体的适应度,按照一定的规则或方法,从第t代群体P(t)中选择出一些优良的个体遗传到下 一代群体P(t+1)中;
交叉:
将群体P(t)内的各个个体随机搭配成对,对每一对个体,以某个概率(称为交叉概率)交换它们之间的部分染色体;
变异:
对群体P(t)中的每一个个体,以某一概率(称为变异概率)改变某一个或某一些基因座上的基因值为其他基因值。

❺ 遗传算法的基本原理

遗传算法通常的实现方式,就是用程序来模拟生物种群进化的过程。对于一个求专最优解的问题,我属们可以把一定数量的候选解(称为个体)抽象地表示为染色体,使种群向更好的解来进化。大家知道,使用算法解决问题的时候,解通常都是用数据或者字符串等表示的,而这个数据或字符串对应到生物中就是某个个体的“染色体”。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中评价其在整个种群的适应度,从当前种群中随机地选择多个个体(基于它们的适应度),通过自然选择和突变产生新的种群,该种群在算法的下一次迭代中成为当前种群。其具体的计算步骤如下:

  • 编码:将问题空间转换为遗传空间;

  • 生成初始种群:随机生成P个染色体;

  • 种群适应度计算:按照确定的适应度函数,计算各个染色体的适应度;

  • 选择:根据染色体适应度,按照选择算子进行染色体的选择;

  • 交叉:按照交叉概率对被选择的染色体进行交叉操作,形成下一代种群;

  • 突变:按照突变概率对下一代种群中的个体进行突变操作;

  • 返回第3步继续迭代,直到满足终止条件。

❻ 遗传算法程序与潮流计算程序怎么结合

首先要清楚常规潮流计算和最优潮流的不同,尤其是计算过程。
常规潮流计算是给定PV,PQ和平衡节点相应的已知条件,根据网络拓扑计算线路功率和网损等运行指标,所给定的条件不一定使电网的运行达到最优水平;并且在电力市场环境下这些条件是未知的。因此需要寻找最优的已知条件,使调度运行成本、安全性、稳定性等最优,即成为最优潮流。在寻找最优运行条件的过程就需要到如遗传算法等智能算法搜索或者数值方法如内点法等。
遗传算法与潮流计算的结合就是用遗传算法搜索最优运行条件。
现假定网损是判定最优与否的原则,即网损越小越优,同时定义遗传算法的适应度为一大数减去网损(即f=C-PL)将最小化问题转化为最大化问题;待求运行条件的个数为m;遗传算法的种群数为n。
由以上分析不难知道,最优潮流计算过程需要反复调用常规潮流计算,这也是计算耗时的原因。
若将遗传算法的收敛判据设定为相邻两代的最大适应度值趋于稳定,则结合过程如下:
(1)初始化:用遗传算法产生初始种群(n行m列),初始最优适应度为0。转(2)
(2)计算适应度:将产生的种群(已知条件)分别代入常规潮流程序,计算每个个体下的网损,从而得到每个个体相应的适应度值,保存最优适应度值。判定最优适应值变化情况,若|f2-f1|<ε(ε为一很小的正数),迭代终止,输出最优个体,否则转(3)。
(3)进行遗传算子的操作:调用遗传算法的选择、交叉和变异操作,从而得到新的种群。转(2)
根据以上三个基本步即可实现遗传算法与潮流计算的结合。

❼ 用遗传算法计算最佳路径的具体方法

1.定义交叉概率,变异概率,终止条件(可以是最小距离限制也可以是代数限制)
2.初始化种群
3.选择个体,交叉,变异
4.计算适应度函数
5.满足终止条件否,满足7,不满足6
6.更新种群,转到3
7.输出结果

❽ 遗传算法概念

遗传算法是模拟达尔文的生物进化理论,结合进化中优胜劣汰的概念,是一种基于自然选择和遗传学原理的搜索算法。

❾ 遗传算法求最优解,及matlab仿真的步骤 要详细步骤!!!

这么复杂的公式,要有数据才能试验编程。不是一下能搞定的。

❿ 关于遗传算法

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法定义
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
[编辑本段]遗传算法特点
遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:
① 首先组成一组候选解;
② 依据某些适应性条件测算这些候选解的适应度;
③ 根据适应度保留某些候选解,放弃其他候选解;
④ 对保留的候选解进行某些操作,生成新的候选解。
在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。
遗传算法还具有以下几方面的特点:
(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。
(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。
(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。
(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。
(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,硬度大的个体具有较高的生存概率,并获得更适应环境的基因结构。
[编辑本段]遗传算法的应用
由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:
1、 函数优化。
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。
2、 组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。
此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
[编辑本段]遗传算法的现状
进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。
随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。
D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。
H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
[编辑本段]遗传算法的一般算法
遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:
创建一个随机的初始状态
初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
评估适应度
对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。
繁殖(包括子代突变)
带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。
下一代

如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。
并行计算

非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。
术语说明
由于遗传算法是由进化论和遗传学机理而产生的搜索算法,所以在这个算法中会用到很多生物遗传学知识,下面是我们将会用来的一些术语说明:
一、染色体(Chronmosome)
染色体又可以叫做基因型个体(indivials),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。
二、基因(Gene)
基因是串中的元素,基因用于表示个体的特征。例如有一个串S=1011,则其中的1,0,1,1这4个元素分别称为基因。它们的值称为等位基因(Alletes)。
三、基因地点(Locus)
基因地点在算法中表示一个基因在串中的位置称为基因位置(Gene Position),有时也简称基因位。基因位置由串的左向右计算,例如在串 S=1101 中,0的基因位置是3。
四、基因特征值(Gene Feature)
在用串表示整数时,基因的特征值与二进制数的权一致;例如在串 S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。
五、适应度(Fitness)
各个个体对环境的适应程度叫做适应度(fitness)。为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数. 这个函数是计算个体在群体中被使用的概率。
[编辑本段]遗传算法的运算过程
选择(复制):
根据各个个体的适应度,按照一定的规则或方法,从第t代群体P(t)中选择出一些优良的个体遗传到下 一代群体P(t+1)中;
交叉:
将群体P(t)内的各个个体随机搭配成对,对每一对个体,以某个概率(称为交叉概率)交换它们之间的部分染色体;
变异:
对群体P(t)中的每一个个体,以某一概率(称为变异概率)改变某一个或某一些基因座上的基因值为其他基因值。

热点内容
法国电影小男孩在农场遇到一只白狗 发布:2024-08-19 08:36:47 浏览:594
微光上有什么恐怖片 发布:2024-08-19 05:25:40 浏览:915
穿越香港鬼片灭鬼的小说 发布:2024-08-19 03:36:10 浏览:833
恶之花都敏秀姐姐扮演者 发布:2024-08-19 02:22:07 浏览:321
thai好看电影 发布:2024-08-18 11:34:37 浏览:795
电影内容女的是傻子容易尿裤子,男的很穷单身汉 发布:2024-08-18 10:31:36 浏览:129
双机巨幕厅和4k厅哪个好 发布:2024-08-18 10:18:41 浏览:818
日本僵尸片上世纪 发布:2024-08-18 07:32:00 浏览:537
怪物 韩国电影在线 发布:2024-08-18 03:49:17 浏览:491
第九区一样的 发布:2024-08-17 23:16:05 浏览:528