当前位置:首页 » 遗传因素 » 遗传算法模拟流体

遗传算法模拟流体

发布时间: 2021-03-25 05:16:26

1. 模拟退火和遗传算法都可以解决什么问题啊

模拟退火算法和遗传算法,包括禁忌搜索算法,蚁群算法等都可以用来版求解优化问题。权这些算法的一个特点是虽然对于一些复杂问题,比如说DP难题,可能不好找到最优解(理论上找到最优解是可以的),但是可以以较高的效率找到满意解。
查看原帖>>

2. 什么叫遗传算法,遗传算法有什么用希望通俗一点儿

首先有个很神奇的现象:人类以及动物的进化都是朝着好的方向发展,虽然有的往坏的方向发展了,但是总体肯定是往好的方向发展。这看似不奇怪,但是我们知道,人类的基因组合是随机的,没有上帝约束。这种随机过程的结果却是一致的!!!!!我们的遗传算法就是从这里得到启发!比如我要求y=x1+x2的最大值,两个变量,我不用传统的数学方法,就用幼儿园的方法,把所有可能取值带进去算,然后找出最大的就行了!但是,有时候取值是连续的,没关系!使其离散化,就像把模拟信号化成数字信号一样!还有个问题,如果取值太多咋办?这就是遗传算法的精髓!
首先,我不用取所有可能取值,我只取几十个或者几百个(自己定),然后进行处理,怎样处理呢?让我们回到刚开始的人类进化问题,虽然没有上帝的帮忙,但是我们知道,自然界遵循优胜劣汰的发贼,遵循交叉变异的法则,虽然不能数字化,但是这是个趋势!我们就是把这种法则数学化!所取的几十个值我要剩下哪些?要抛弃哪些?要处理哪些?这都要我们自己选择,肯定是选择最合适的取值留下,经过一系列的处理,就生成了新的群体,然后再处理,自己约定处理到第几次就可以了,取出现过的最大值
不用担心取到的是不是最大值,因为数学上已经有了证明,这种方法是收敛的,概率是1,所以尽管放心的做,具体的做法要参考相关书籍,不难的。
遗传算法的最大用处就是解决数学理论不能解决的问题!比如路径规划,调度问题……

3. 遗传算法的模拟 数据结构题目

这里有你要的资料:

C#实现遗传算法 模拟花朵的进化
http://hi..com/kkkkyue/blog/item/b2eef12451d334378644f921.html
遗传算法程序
http://hi..com/tkboy/blog/item/fb1aa31e5274b91e4034175e.html

int main(int argc,char *argv[]) /* 主程序 */
{
struct indivial *temp;
// FILE *fopen();
void title();
char *malloc();
/* if((outfp = fopen(argv[1],"w")) == NULL)
{
printf("Cannot open output file %s\n",argv[1]);
exit(-1);
}*/

title();
printf("输入遗传算法执行次数(1-5):");
scanf("%d",&maxruns);
for(run=1; run<=maxruns; run++)
{
initialize();
for(gen=0; gen<maxgen; gen++)
{
printf("\n第 %d / %d 次运行: 当前代为 %d, 共 %d 代\n", run,maxruns,gen,maxgen);
/* 产生新一代 */
generation();
/* 计算新一代种群的适应度统计数据 */
statistics(newpop);
/* 输出新一代统计数据 */
report();
temp = oldpop;
oldpop = newpop;
newpop = temp;
}
freeall();
}
}

4. Java 编程模拟遗传算法(Genetic Algorithm, GA):通过交叉变换得出孩子的染色体

大哥你确定5分能搞到java模拟遗传算法?
你搞到了别忘了给我来一份 [email protected] 膜拜。

5. 请问一下遗传算法,模拟退火算法和遗传模拟退火算法的区别,最好能有根据同一个数学问题的matalb程序源代

遗传算法全局优化能力较强,模拟退火算法局部优化能力较强,这是两者的最大区别。遗传模拟退火算法是两者的混合算法,综合了两者的优点。参考资料中是改进遗传算法解决TSP问题的matlab代码。

一时半会应该是搞不清楚的,你可以买一本智能优化算法的书来看,详细了解一下遗传算法和模拟退火算法的原理。

6. 遗传算法、数值算法、爬山算法、模拟退火 各自的优缺点

遗传算法:其优点是能很好地处理约束,跳出局部最优,最终得到全局最优解。缺点是收敛速度慢,局部搜索能力弱,运行时间长,容易受到参数的影响。

模拟退火:具有局部搜索能力强、运行时间短的优点。缺点是全局搜索能力差,容易受到参数的影响。

爬山算法:显然爬山算法简单、效率高,但在处理多约束大规模问题时,往往不能得到较好的解决方案。

数值算法:这个数值算法的含义太宽泛了,指的是哪种数值算法,阵列算法与爬山算法一样,各有优缺点。

(6)遗传算法模拟流体扩展阅读:

注意事项:

遗传算法的机制比较复杂,在Matlab中已经用工具箱中的命令进行了打包,通过调用可以非常方便的使用遗传算法。

函数GA:[x,Fval,reason]=GA(@fitnessfun,Nvars,options)x为最优解,Fval为最优值,@Fitnessness为目标函数,Nvars为自变量个数,options为其他属性设置。系统的默认值是最小值,所以函数文档中应该加上一个减号。

要设置选项,您需要以下函数:options=GaOptimset('PropertyName1','PropertyValue1','PropertyName2','PropertyName3','PropertyValue3'…)通过该函数,可以确定一些遗传算法的参数。

7. 比较模拟退火算法和遗传算法相同点和不同点

模拟退火的话进化是由参数问题t控制的,然后通过一定的操作产生新的解,根据当前解的优劣和温度参数t确定是否接受当前的新解。
遗传算法主要由选择,交叉,变异等操作组成,通过种群进行进化。
主要不同点是模拟退火是采用单个个体进行进化,遗传算法是采用种群进行进化。模拟退火一般新解优于当前解才接受新解,并且还需要通过温度参数t进行选择,并通过变异操作产生新个体。而遗传算法新解是通过选择操作进行选择个体,并通过交叉和变异产生新个体。
相同点是都采用进化控制优化的过程。

8. 遗传算法和模拟退火算法结合神经网络,进行故障诊断和数据预测,这种思路的Matlab程序,高分求助

可以用GA来优化BP网络的初始权值,再用SA来训练网络。也可直接将两种算法融合。具体看你想怎么做。附件是一个基于Matlab的SA/GA融合程序,和你的要求不同,但是可以参考。

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

9. 遗传算法、粒子群、模拟退火相比于普通的蒙特卡洛算法有什么优势他们相互的优缺点都是什么

他们有类似之处,但差别也不小。
蒙特卡洛算法是数值计算方法,原理是利用随机数来解决计算问题。与它对应的是确定性算法。也就是说该种算法属于随机算法,得到的解是近似解。
而遗传算法、粒子群、模拟退火虽然也是随机近似算法,但这三种都是仿生智能算法,且比蒙特卡洛算法要复杂,应用的领域也不太相同。
显然,蒙特卡洛算法很轻巧,求解问题更快速。

热点内容
法国电影小男孩在农场遇到一只白狗 发布:2024-08-19 08:36:47 浏览:594
微光上有什么恐怖片 发布:2024-08-19 05:25:40 浏览:915
穿越香港鬼片灭鬼的小说 发布:2024-08-19 03:36:10 浏览:833
恶之花都敏秀姐姐扮演者 发布:2024-08-19 02:22:07 浏览:321
thai好看电影 发布:2024-08-18 11:34:37 浏览:795
电影内容女的是傻子容易尿裤子,男的很穷单身汉 发布:2024-08-18 10:31:36 浏览:129
双机巨幕厅和4k厅哪个好 发布:2024-08-18 10:18:41 浏览:818
日本僵尸片上世纪 发布:2024-08-18 07:32:00 浏览:537
怪物 韩国电影在线 发布:2024-08-18 03:49:17 浏览:491
第九区一样的 发布:2024-08-17 23:16:05 浏览:528