遗传密码的定义
1. 起始密码子,和终止密码子有什么定义啊
其实密码子就是基因工程中植入质粒中的一段特殊碱基序列,合成蛋白质的时候会tRNA会从这里开始读取,然后遇到终止密码子就结束,基因工程的质粒一定包括起始密码子,目的基因,终止密码子,详细的可以翻翻你的课本,等到高二你就学了,这里粗略说了说
2. 生物密码的定义是什么
遗传信息是指基因中的脱氧核苷酸排列顺序或碱基的排列序列,位置在DNA分子上。一般认为遗传信息在有遗传效应的一段DNA分子的一条链上,称为信息链。信息链是指与模板链互补的这条链,模板链上的碱基序列不代表遗传信息。以模板转录成mRNA,mRNA上的碱基排列顺序称为遗传密码,所以经过转录后,遗传信息就转化成遗传密码。遗传密码的位置在mRNA,mRNA上相邻的3个碱基决定一个氨基酸,这3个相邻的碱基称为密码子。
3. 遗传密码的医学应用
人类基因图谱的遗传密码序列最近即将全部揭晓,科学家大胆地预测医学即将进入分子医学与基因治疗的时代,我们不仅可以利用分子医学或生物晶片的方法,找出有问题的致病分子,利用基因工程的方法加以改造,进行所谓“基因治疗“,还可以分析某某人的全部遗传密码序列,提前预测将来发生某种疾病的倾向。一切似乎非常完美,真的是如此吗?
临床的疾病,真正属于单一基因发生突变的仍属少数,大部分的疾病依旧原因不明,据推测多基因(Polygenic)或多因子(Polyfactorial)的原因占了大宗。单基因的疾病,例如苯酮尿症(Phenylketonuria)、舞蹈症(Huntington’sChorea)、地中海型贫血(beta-Thalassemia)等只占了很小的比例,常见的疾病,例如高血压、糖尿病、退化性关节炎、老人失智症,可能是好几个基因出了问题,加上环境的因素的影响。对于单基因的疾病,现在可以应用遗传连锁(Linkagestudy)的方法,将致病基因定位(Positionalcloning),再破解遗传密码,但是多基因或多因子造成的疾病,目前并没有可行的遗传学理论或实验方法,可以用来找到所有可能相关的基因。
因为受到医学伦理的约束,基因治疗的临床价值迄今仍未得到证明。基因治疗最早是针对ADA(Adenosinedeaminase)缺乏引起的免疫缺乏症(泡泡娃娃,Bubblebaby),由美国国家卫生院的FrancisAnderson等人主持,他们取出病人的骨髓细胞,用基因工程的技术加以改造,修补其免疫缺损,再重新输回病人的身体,基因治疗的同时,病人也接受ADA酵素的治疗,研究人员担心万一基因治疗无效,因此不敢贸然停止ADA的使用,基因治疗究竟是否有效,并没有客观的结论。
1980年代有学者在国际知名的Nature杂志上发表研究论文,指出精神分裂症及躁郁症与遗传的关系,精神分裂症的基因被定位于第五对染色体,躁郁症的基因则位于第十一对染色体,后来相关的研究并不能重复这些结果,因此早先发表的文章遭到撤回,试想高血压,糖尿病究竟是单基因、多基因、或者环境因素所造成,迄今仍原因未明,更何况这些复杂的精神疾病!
人类行为的遗传模式到现在仍不清楚,大部分精神分裂症及躁郁症的病人都是偶发的个案,偶而有家族史,但是很少有三代以上的家族病史,无法套用目前基因连锁定位(Linkagestudy)来做致病基因的染色体定位;大部分的病人多半在二十岁左右发病,不容易找到对象结婚,因此精神疾病如果完全是由于遗传基因的作用,他们的遗传基因也很难传递到下一代,但是人口中精神分裂症及躁郁症的病人所占的比例始终约略小于百分之一,这种现象很难以现有的遗传学理论解释;精神疾病目前诊断的方式,仍然以症状诊断为主,始终缺乏生物性的诊断方法,譬如抽血检查血液中的化学物质,或者影像学的检查,看看脑部那个结构出了问题;精神疾病的异质性(Heterogenecity)相当高,增加研究的困难度,很难区分究竟是先天遗传或者后天环境造成。
1980年代曾有学者以美国东部Amish族群作为研究躁郁症的对象,后来因为少数几个个案的诊断有疑义,整的研究结果受到质疑。自从Watson及Crick于1953年发表DNA的论文之后,分子生物学一日千里,经由国际上许多科学家的协同努力,今天终于揭开人类的遗传密码序列,但是行为科学与精神医学连入口在哪里,现在都还不知道,之所以如此艰难,是因为到目前为止,连最基本的心智功能都没有明确的定义,更遑论要整合各种研究的结论,例如记忆(Memory)就有好多种分法,譬如分成即时记忆、短程记忆及长程记忆,也可分为明确记忆(Explicitmemory)及隐含记忆(Implicitmemory),加上工作状态记忆(Workingmemory)等等;大脑可以记忆,小脑也有记忆能力,例如开车,遇到紧急状况踩煞车,通常是反射动作,不经过大脑考虑,单单对于记忆的了解就如此凌乱,其他如情绪、知觉、理解力、逻辑推理能力等等,迄今仍是浑沌一片。
乐观的看来,最近这十年,或者最近这一百年,不会有太大进展,悲观的一派则认为人类的心智永远没有解答,除非遗传学以及神经科学理论的基本架构有划时代突破性的发现。
4. 遗传学上的密码子是指 ( )
【答案】B
【答案解析】试题分析:遗传学上的密码子指的是mRNA上决定一个氨基酸的3个相邻碱基。答案选B。
考点:本题考查密码子的定义,意在考查考生的记忆能力。
5. 什么是遗传密码简述其基本特点
遗传密码是一组规则,将DNA或RNA序列以三个核苷酸为一组的密码子转译为蛋白质的氨基酸序列,以用于蛋白质合成。几乎所有的生物都使用同样的遗传密码,称为标准遗传密码;即使是非细胞结构的病毒,它们也是使用标准遗传密码。但是也有少数生物使用一些稍微不同的遗传密码。
特点
1、方向性,密码子是对mRNA分子的碱基序列而言的,它的阅读方向是与mRNA的合成方向或mRNA编码方向一致的,即从5'端至3'端。
2、连续性,mRNA的读码方向从5'端至3'端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插入、缺失和重叠,均造成框移突变。
3、简并性,指一个氨基酸具有两个或两个以上的密码子。密码子的第三位碱基改变往往不影响氨基酸翻译。
4、摆动性,mRNA上的密码子与转移RNA(tRNA)J上的反密码子配对辨认时,大多数情况遵守碱基互补配对原则,但也可出现不严格配对,尤其是密码子的第三位碱基与反密码子的第一位碱基配对时常出现不严格碱基互补,这种现象称为摆动配对。
5、通用性,蛋白质生物合成的整套密码,从原核生物到人类都通用。但已发现少数例外,如动物细胞的线粒体、植物细胞的叶绿体。
(5)遗传密码的定义扩展阅读:
除了少数的不同之外,地球上已知生物的遗传密码均非常接近;这显示遗传密码应在生命演化的历史中很早期就出现,并且证明了所有生物都源自共同祖先。现有的证据表明遗传密码的设定并非是随机的结果,对此有以下的可能解释:
1、最近一项研究显示,一些氨基酸与它们相对应的密码子有选择性的化学结合力,这显示现在复杂的蛋白质制造过程可能并非一早存在,最初的蛋白质可能是直接在核酸上形成。
2、原始的遗传密码可能比今天简单得多,随着生命演化制造出新的氨基酸再被利用而令遗传密码变得复杂。虽然不少证据证明这观点3,但详细的演化过程仍在探索之中。
3、经过自然选择,现时的遗传密码减低了突变造成的不良影响。
6. 遗传学上的“密码子”是指
答案是:B。
定义就是B项:密码子是指信使RNA上决定一个氨基酸的3个相邻碱基。
7. 生物定义“几乎所有生物都共用一套遗传密码”对吗
是有这样的推论
但是不能就直接这样下定义。。。
这个问题
还没有得到最终的答案。。。
这个答案也很难真的得出。。。
8. 三联体密码就是遗传密码吗
遗传密码是mRNA上相邻的三个碱基组成的并能翻译成蛋白质。
三联体密码含有终止密码子!!
9. 起始密码子,和终止密码子有什么定义啊
其实密码子就是基因工程中植入质粒中的一段特殊碱基序列,合成蛋白质的时候会tRNA会从这里开始读取,然后遇到终止密码子就结束,基因工程的质粒一定包括起始密码子,目的基因,终止密码子,详细的可以翻翻你的课本,等到高二你就学了,这里粗略说了说