遗传排斥
A. 什么样的人结合染色体会互相排斥的
同性染色体相排斥,
B. 在遗传算法中什么叫排挤机制
排挤机制是小生境策略的一种
通过利用算法中产生的新个体排挤老种群中随机选择的个体
保持种群多样性
具体见王小平曹立明著
遗传算法-算法理论与应用
C. 因为遗传而狐臭在学校受到排斥家长应该怎么安慰
因为遗传的胡秀在学校受到排斥,家长因为积极帮助孩子进行药物方面的治疗,减轻狐臭的味道,另外告诉孩子,这是正常的,遗传的造成的,不会对身体有什么影响嗯,能够理解这件事
D. 胚胎与母体相排斥是什么原因
一般不会排斥,如果有则是机体免疫系统的问题了,移植的胚胎此时相当于抗原
E. 器官移植后为什么会出现排斥反应
原来每个人的细胞表面都带有属于自己的独特的抗原,这是由许多基因控制的、性状多样的抗原,称为人类组织相容性抗原,简称HLA,是一组多种抗原的总称。除遗传密码完全相同的同卵双生子女和“克隆人”与其模型人以外,人与人之间的HLA各不相同,这就像人与人之间的脸蛋和指纹不会完全相同一样。理所当然,当外来的器官进入人体后,只要免疫威力能达到的地方,免疫系统就会识别出外来器官上的抗原与自己身体内的抗原不同,对其加以攻击,最终引起移植进来的器官功能迅速衰竭、死亡,称排斥反应。按排斥反应发生的程度和时间,排斥反应可分为超急性、急性和慢性三种。
临床上导致器官移植失败的主要原因是急性排斥反应,由T淋巴细胞系统参与,包括四个连续的阶段:①移植术后,移植器官活性细胞表面所带的HLA抗原,被T淋巴细胞所“识别”、“判定”为异物;②T淋巴细胞受到刺激后进入“致敏”状态;③致敏了的淋巴细胞大量增殖、分化;④致敏淋巴细胞及各种淋巴因子吸引来的单核细胞等对移植器官进行攻击,即为急性排斥反应。以上每一阶段都要一定的时间,因此,首次急性排斥最早发生在移植术后5~14天。
F. 为什么器官移置会产生排斥反应呢
目前在器官移植中面临的最大问题,就是排斥反应问题。那为什么器官移置后不可避免地总是要产生排斥反应呢
原来每个人的细胞表面都带有属于自己的独特的抗原,这是由许多基因控制的、性状多样的抗原,称为人类组织相容性抗原,简称HLA,是一组多种抗原的总称。除遗传密码完全相同的同卵双生子女和“克隆人”与其模型人以外,人与人之间的HLA各不相同,这就像人与人之间的脸蛋和指纹不会完全相同一样。理所当然,当外来的器官进入人体后,只要免疫威力能达到的地方,免疫系统就会识别出外来器官上的抗原与自己身体内的抗原不同,对其加以攻击,最终引起移植进来的器官功能迅速衰竭、死亡,称排斥反应。按排斥反应发生的程度和时间,排斥反应可分为超急性、急性和慢性三种。
G. 基因排斥现象解决设想
基因是DNA分子上含特定遗传信息的核育酸序列的总称,是遗传物质的最小功能单位。
基因一词是英语“gsne”的音译,是“开始”、“生育”的意思。它源于印欧语系,后变为拉丁语的gM(氏族)以及现代英语中genus(种属)、genius(天才)、genial (生殖)等诸多词汇。1909年,丹麦学者约翰逊提出基因这一名词,用它来指任何一种生物中控制任何遗传性状而其遗传规律又符合于孟德尔定律的遗传因子。
在孟德尔定律发现之前,人们对生物遗传曾提出了诸多的说法。如普遍流行的融合遗传论就认为双亲的遗传物质在子代中像血液一样混合,被稀释且不能分开,但孟德尔的实验结果则相反,现代隐性基因并不在杂交子一代中消失,它所决定的性状还能在于二代中出现。据此孟德尔提出了“遗传颗粒”学说。20世纪初叶孟德尔理论在许多动植物中得到了进一步的验证。最有代表性的是1910年美国科学家摩尔根发现果蝇的白眼性状的伴性遗传现象,即白眼性状始终在雄性果蝇中出现,第一次把一个特定的基因定位于一条特定的染色体(决定性别的性染色体)上,使遗传学和细胞学终于殊途同归。有人曾对此作了一个形象的比喻:若将孟德尔学说比作是从生物雄壮的交响乐中分解出七个音符,那么摩尔根的染色体遗传理论则不仅证实了六弦琴上六根琴弦的存在,而且证明了这七个音符就是从这只大弦琴上发出来的。
孟德尔学说和摩尔根的基因论都把基因看作是一个界限分明的独立遗传单位,甚至到本世纪50年代初人们在对基因的化学本质(核酸)及DNA双螺旋结构有了明确认识后,仍然认为基因是不可分的基本遗传单位,如同当初人们认为分子是物质的基本粒子一样。这种观念直到1957年才得到纠正。 著名遗传学家本泽尔在经过10年艰苦工作,取得了三大发现后提出了全新的基因概念,于是彻底冲破了经典基因不可分的观念。他认为:(1)作为基因的单位,可以精确到单核育酸或碱基水平,称为突变子。(2)作为交换单位,同突变单位一样,仍以单核计酸为基本单位,称为互换子。(3)作为功能单位,基因也是可分的。本泽尔的功劳不仅在于提出了全新的基因概念,而且把“基因”作为一种概念引入到遗传学实验中来了。本泽尔把突变子成互换子像绘制染色体图一样排列在基因图谱上,这是遗传学上一次从宏观到微观的飞跃。
1969年,夏皮罗等人从大肠杆菌中分离到乳糖操纵子并使它在离体条件下转录。证实了一个基因可离开染色体而独立发挥作用。1970年,梯明发现了仅以RNA作为遗传物质的逆转录病毒,提示遗传物质不仅仅是DNA,也可以是RNA,从而使中心法则内容得到扩展。
时隔20年后的1977年,人们又在猿猴病毒(SV。)和腺病毒(AdV)中发现某些基因中存在内部间隔区,间隔区的顺序与基因所决定的蛋白质序列没有任何关系——这使科学家们大吃一惊。随后,基因的这种可分割、不连续的现象在酵母tRNA基因、果蝇的 n3NA基因、人的胶原蛋白基因中也得到了证实。这样基因的概念中又多了一项新内容:基因结构具有不连续性。因为这是生物界尤其是真核生物中普遍存在的现象,为便于称呼,人们把这种分裂基因中能实现遗传信息表达的部分称为外显子,而不表达部分称作内含子。
1980年法国科学家斯洛宁姆斯基在酵母线粒体DNA的研究中证实,一个基因的内含子可能是另一个基因的外显子,也就是说,内含子也可能是具有功能的,剪接酶并没有把它们带到死亡中去,生物界中DNA的所有成员可能没有废料。
与基因分裂或不连续性的概念相反的是基因的重叠性。1977年桑格等在噬菌体甲 174DNA中和1978年菲尔斯等在SV40DNA中均发现了几个基因共用同一段DNA序列的情况。
虽然这种现象在自然界并不普遍,但至少说明基因确实存在着阅读框架的重叠现象,这体现了生物的“节约”原则。
对经典的、近代的以至现代的基因概念的挑战还不止这些。比如,一个基因一个多肽假说,在相当长的时间被证明是正确的,可是近年来发现一些基因绝不产生任何蛋白质或者多肽,而仅产生RNA,各种tRNA、rRNA基因就是这样。因此人们只有加以补充:
基因的功能在于决定蛋白质或核酸。但是这仍不能解释一些事实:DNA中确实存在一些片段,它根本不产生任何物质而仅以位置或结构起作用。例如,操纵区和
H. 为什么器官移置后会出现排斥反应呢
原来每个人的细胞表面都带有属于自己的独特的抗原,这是由许多基因控制的、性状多样的抗原,称为人类组织相容性抗原,简称HLA,是一组多种抗原的总称。除遗传密码完全相同的同卵双生子女和“克隆人”与其模型人以外,人与人之间的HLA各不相同,这就像人与人之间的脸蛋和指纹不会完全相同一样。理所当然,当外来的器官进入人体后,只要免疫威力能达到的地方,免疫系统就会识别出外来器官上的抗原与自己身体内的抗原不同,对其加以攻击,最终引起移植进来的器官功能迅速衰竭、死亡,称排斥反应。按排斥反应发生的程度和时间,排斥反应可分为超急性、急性和慢性三种。
I. 器官移植为什么会出现排斥反应
哺乳动物在进行器官移植时会产生异体排斥现象,这是由于异体之间主要组织相容性抗原———MHC的差异所致。同种属的动物的MHC有不同的命名,如小鼠的MHC称H-2复合体,猪的MHC称SLA复合体,人的MHC称HLA复合体。
现代免疫学理论认为,MHC是位于脊椎动物某一染色体上一组紧密连锁的高度多态性的基因群,其基因产物MHC分子在免疫应答中具有重要的生物学意义,它不但参与移植排斥反应和T细胞的分化发育,而且在免疫应答的启动和免疫调节中发挥重要作用。MHC与人类的很多疾病密切相关,是人类基因组中最多态的基因簇,它的多样性被认为与进化的多样性有关。其中许多基因非常古老,并可能在人类进化中不发生任何改变。MHC也控制人类对移植器官或骨髓的接受或排斥程度。MHC区域几乎总是作为一个整体进行遗传,即所谓的单倍型,意思是“单独的单元”,而不是作为一个分离的基因存在。单倍型可能是复杂疾病的遗传原因之一,这些疾病与单个的基因或遗传突变无关,而是与一组基因相关。