dna遗传算法
『壹』 网上经常所说的遗传算法与基因算法是一回事吗有什么不同各自的用途用在什么地方
遗传算法
GA是一种基于自然群体遗传演化机制的高效探索算法,它是美国学者Holland于1975年首先提出来的。
它摒弃了传统的搜索方式,模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。它将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作(遗传,交叉和变异),根据预定的目标适应度函数对每个个体进行评价,依据适者生存,优胜劣汰的进化规则,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。
Holland创建的遗传算法是一种概率搜索算法,它是利用某种编码技术作用于称为染色体的数串,其基本思想是模拟由这些组成的进化过程。跗算法通过有组织地然而是随机地信息交换重新组合那些适应性好的串,在每一代中,利用上一代串结构中适应好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试用新的位和段来替代原来的部分。
遗传算法是一类随机化算法,但是它不是简单的随机走动,它可以有效地利用已经有的信息处理来搜索那些有希望改善解质量的串,类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题。与自然界相似,遗传算法对待求解问题本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应度值来造反染色体,使适用性好的染色体比适应性差的染色体有更多的繁殖机会。
基因:组成染色体的单元,可以表示为一个二进制位,一个整数或一个字符等。
染色体或个体:表示待求解问题的一个可能解,由若干基因组成,是GA操作的基本对象。
群体:一定数量的个体组成了群体,表示GA的遗传搜索空间。
适应度或适度:代表一个个体所对应解的优劣,通常由某一适应度函数表示。
选择:GA的基本操作之一,即根据个体的适应度,在群体中按照一定的概论选择可以作为父本的个体,选择依据是适应度大的个体被选中的概率高。选择操作体现了适者生存,优胜劣汰的进化规则。
交叉:GA的基本操作之一,即将父本个体按照一定的概率随机地交换基因形成新的个体。
变异:GA的基本操作之一,即即按一定概率随机改变某个体的基因值。
基因算法是一种生物进化的算法,实际上是一种多目标的探索法.能够用于计划与排程.它是非常新的技术,目前,还没有在商业中实际运用.
采用生物基因技术高级算法,处理日益复杂的现实世界,也是人工智能上,高级约束算法上的挑战. 基因算法是一种搜索技术,它的目标是寻找最好的解决方案。这种搜索技术是一种优化组合,它以模仿生物进化过程为基础。基因算法的基本思想是,进化就是选择了最优种类。基因算法将应用APS上,以获得“最优”的解决方案。
『贰』 基因遗传算法的主流是什么
基因遗传算法是一种灵感源于达尔文自然进化理论的启发式搜索算法 该算法反映了自然选择的过程 即最适者被选定繁殖 并产生下一代
自然选择的过程从选择群体中最适应环境的个体开始 后代继承了父母的特性 并且这些特性将添加到下一代中 如果父母具有更好的适应性 那么它们的后代将更易于存活 迭代地进行该自然选择的过程 最终 我们将得到由最适应环境的个体组成的一代
这一概念可以被应用于搜索问题中 我们考滤一个问题的诸多解决方案 并从中搜寻出最佳方案
遗传算法含以下五步
1.初始化
2.个体评价(计算适应度函数)
3.选择运算
4.交叉运算
5.变异运算
初始化
该过程从种群的一组个体开始 且每一个体都是待解决问题的一个候选解
个体以一组参数(变量)为特征 这些特征被称为基因 串联这些基因就可以组成染色体(问题的解)
在遗传算法中 单个个体的基因组以字符串的方式呈现 通常我们可以使用二进制(1和0的字符串)编码 即一个二进制串代表一条染色体串 因此可以说我们将基因串或候选解的特征编码在染色体中
个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体径争的能力)每一个体都有适应评分 个体被选中进行繁殖的可能性取决于其适应度评分 适应度函数是遗传算法进化的驱动力 也是进行自然选择的唯一标准 它的设计应结合求解问题本身的要求而定
选择运算的目的是选出适应性最好的个体 并使它们将基因传到下一代中 基于其适应度评分 我们选择多对较优个体(父母)适应度高的个体更易被选中繁殖 即将较优父母的基因传递到下一代
交叉运算是遗传算法中最重要的阶段 对每一对配对的父母 基因都存在随机选中的交叉点
变异运算
在某些形成的新后代中 它们的某些基因可能受到低概率变异因子的作用 这意味着二进制位串中的某些位可能会翻转
变异运算前后
变异运算可用于保持群内的多样性 并防止过早收敛
终止
在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止 也就是说遗传算法提供了一组问题的解
『叁』 ] 基因遗传算法的组成部分包括什么
基因遗传算法的组成部分包括什么?这可是医学上的一大静谧
『肆』 基因遗传算法主流
基因遗传算法是一种灵感源于达尔文自然进化理论的启发式搜索算法 该算法反映了自然选择的过程 即最适者被选定繁殖 并产生下一代
自然选择的过程从选择群体中最适应环境的个体开始 后代继承了父母的特性 并且这些特性将添加到下一代中 如果父母具有更好的适应性 那么它们的后代将更易于存活 迭代地进行该自然选择的过程 最终 我们将得到由最适应环境的个体组成的一代
这一概念可以被应用于搜索问题中 我们考滤一个问题的诸多解决方案 并从中搜寻出最佳方案
遗传算法含以下五步
1.初始化
2.个体评价(计算适应度函数)
3.选择运算
4.交叉运算
5.变异运算
初始化
该过程从种群的一组个体开始 且每一个体都是待解决问题的一个候选解
个体以一组参数(变量)为特征 这些特征被称为基因 串联这些基因就可以组成染色体(问题的解)
在遗传算法中 单个个体的基因组以字符串的方式呈现 通常我们可以使用二进制(1和0的字符串)编码 即一个二进制串代表一条染色体串 因此可以说我们将基因串或候选解的特征编码在染色体中
个体评价利用适应度函数评估了该个体对环境的适应度(与其它个体径争的能力)每一个体都有适应评分 个体被选中进行繁殖的可能性取决于其适应度评分 适应度函数是遗传算法进化的驱动力 也是进行自然选择的唯一标准 它的设计应结合求解问题本身的要求而定
选择运算的目的是选出适应性最好的个体 并使它们将基因传到下一代中 基于其适应度评分 我们选择多对较优个体(父母)适应度高的个体更易被选中繁殖 即将较优父母的基因传递到下一代
交叉运算是遗传算法中最重要的阶段 对每一对配对的父母 基因都存在随机选中的交叉点
变异运算
在某些形成的新后代中 它们的某些基因可能受到低概率变异因子的作用 这意味着二进制位串中的某些位可能会翻转
变异运算前后
变异运算可用于保持群内的多样性 并防止过早收敛
终止
在群体收敛的情况下(群体内不产生与前一代差异较大的后代)该算法终止 也就是说遗传算法提供了一组问题的解
『伍』 关于遗传算法
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法定义
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
[编辑本段]遗传算法特点
遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:
① 首先组成一组候选解;
② 依据某些适应性条件测算这些候选解的适应度;
③ 根据适应度保留某些候选解,放弃其他候选解;
④ 对保留的候选解进行某些操作,生成新的候选解。
在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。
遗传算法还具有以下几方面的特点:
(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。
(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。
(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。
(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。
(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,硬度大的个体具有较高的生存概率,并获得更适应环境的基因结构。
[编辑本段]遗传算法的应用
由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:
1、 函数优化。
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。
2、 组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。
此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
[编辑本段]遗传算法的现状
进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。
随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。
D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。
H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
[编辑本段]遗传算法的一般算法
遗传算法是基于生物学的,理解或编程都不太难。下面是遗传算法的一般算法:
创建一个随机的初始状态
初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。
评估适应度
对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。
繁殖(包括子代突变)
带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。
下一代
如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直到达到期望的解为止。
并行计算
非常容易将遗传算法用到并行计算和群集环境中。一种方法是直接把每个节点当成一个并行的种群看待。然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。
术语说明
由于遗传算法是由进化论和遗传学机理而产生的搜索算法,所以在这个算法中会用到很多生物遗传学知识,下面是我们将会用来的一些术语说明:
一、染色体(Chronmosome)
染色体又可以叫做基因型个体(indivials),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。
二、基因(Gene)
基因是串中的元素,基因用于表示个体的特征。例如有一个串S=1011,则其中的1,0,1,1这4个元素分别称为基因。它们的值称为等位基因(Alletes)。
三、基因地点(Locus)
基因地点在算法中表示一个基因在串中的位置称为基因位置(Gene Position),有时也简称基因位。基因位置由串的左向右计算,例如在串 S=1101 中,0的基因位置是3。
四、基因特征值(Gene Feature)
在用串表示整数时,基因的特征值与二进制数的权一致;例如在串 S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。
五、适应度(Fitness)
各个个体对环境的适应程度叫做适应度(fitness)。为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数. 这个函数是计算个体在群体中被使用的概率。
[编辑本段]遗传算法的运算过程
选择(复制):
根据各个个体的适应度,按照一定的规则或方法,从第t代群体P(t)中选择出一些优良的个体遗传到下 一代群体P(t+1)中;
交叉:
将群体P(t)内的各个个体随机搭配成对,对每一对个体,以某个概率(称为交叉概率)交换它们之间的部分染色体;
变异:
对群体P(t)中的每一个个体,以某一概率(称为变异概率)改变某一个或某一些基因座上的基因值为其他基因值。
『陆』 遗传算法的基本原理
自然界是一个自适应的大系统[53,56~60],自然系统中的大多数生物体通过自然选择和有性生殖这两种基本过程进行自身的演化,使自己逐步达到完美来适应大自然。遗传算法受生物进化与遗传的启发,形成一种独特的优化方式,遗传算法的运算原理常常与生物进化及遗传学说相吻合,而且其术语也常仿照生物学的术语。遗传算法的运算基础是字符串,先将搜索对象编码为字符串形式;字符串就相当于生物学中的染色体,由一系列字符组成;每个字符都有特定的含义,反映所解决问题的某个特征,这就相当于基因,亦即染色体DNA的片段。每个字符串结构被称为个体,每个个体都可以通过问题本身所具有的适应值度量来计算反映其适应性好坏的适应值,然后对一组字符串结构(被称为一个群体)进行循环操作。每次循环操作被称作一代,其中的操作包括:保存字符串组中适应性较好的那些字符串到下一代(对应于遗传学中的复制),使上一代中的优良个体得以生存下去,这类似于生物进化论中的自然选择。通过有组织的然而是随机的字符串间的信息交换来重新结合那些适应性好的字符串(对应于遗传学中的交叉),在每一代中利用上一代字符串结构中适应性好的位和段来生成一个新的字符串的群体;作为额外增添,偶尔也要在字符串结构中尝试用新的位和段来替代原来的部分(对应于遗传学中的变异),等等。遗传算法中这些操作只涉及字符串的某些片段,这就类似于遗传过程只涉及某些基因而不是整个染色体。遗传算法是一类随机算法,但它不是简单的随机走动,它可以有效地利用已有的信息来搜寻那些有希望改善解质量的字符串。类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题。与自然界相似,遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应值来选择染色体,使适应性好的染色体有更多的繁殖机会。
『柒』 基因遗传算法中,利用适应度函数表示参数值的大小,个体是否应该被淘汰
适应度用于评价个体的优劣程度,适应度越大个体越好,反之适应度越小则个体越专差;根据适应度的大小对属个体进行选择,以保证适应性能好的个体有更多的机会繁殖后代,使优良特性得以遗传。因此,遗传算法要求适应度函数值必须是非负数,而在许多实际问题中,求解的目标通常是费用最小,而不是效益最大,因此需要将求最小的目标根据适应度函数非负原则转换为求最大目标的形式。
『捌』 什么是遗传算法
遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
『玖』 量子遗传算法与遗传算法有什么区别
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
量子遗传算法是量子计算与遗传算法相结合的产物。目前,这一领域的研究主要集中在两类模型上:一类是基于量子多宇宙特征的多宇宙量子衍生遗传算法(Quantum Inspired Genetic Algorithm),另一类是基于量子比特和量子态登加特性的遗传量子算法(Genetic Quantum Algorithm,GQA)。
量 子遗传算法(Quantum GeneticA lgorithm,QGA)。QGA采用多状态基因量子比特编码方式和通用的量子旋转门操作。引入动态调整旋转角机制和量子交叉,比文献[2]的方法更具有通用性,且效率更高。但该方法仍是一个群体独自演化没有利用盈子信息的多宇宙和宇宙间的纠缠特性效率有待进一步提高。文献[3]提出一种多宇宙并行量子遗传算法(Multiuniverse Parallel Quantum Genetic Algorithm,MPQGA),算法中将所有的个体按照一定的拓扑结构分成一个个独立的子群体,称为宇宙;采用多状态基因量子比特编码方式来表达宇宙中的个体;采用通用的量子旋转门策略和动态调整旋转角机制对个体进行演化;各宇宙独立演化,这样可扩大搜索空间,宇宙之间采用最佳移民、量子交叉和量子变异操作来交换信息使算法的适应性更强,效率更高。
『拾』 请问什么是遗传算法,并给两个例子
遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借
用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性
的提高。这一点体现了自然界中"物竞天择、适者生存"进化过程。1962年Holland教授首次
提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方
面,并奠定了坚实的理论基础。 用遗传算法解决问题时,首先要对待解决问题的模型结构
和参数进行编码,一般用字符串表示,这个过程就将问题符号化、离散化了。也有在连续
空间定义的GA(Genetic Algorithm in Continuous Space, GACS),暂不讨论。
一个串行运算的遗传算法(Seguential Genetic Algoritm, SGA)按如下过程进行:
(1) 对待解决问题进行编码;
(2) 随机初始化群体X(0):=(x1, x2, … xn);
(3) 对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好
坏;
(4) 应用选择算子产生中间代Xr(t);
(5) 对Xr(t)应用其它的算子,产生新一代群体X(t+1),这些算子的目的在于扩展有限
个体的覆盖面,体现全局搜索的思想;
(6) t:=t+1;如果不满足终止条件继续(3)。
GA中最常用的算子有如下几种:
(1) 选择算子(selection/reproction): 选择算子从群体中按某一概率成对选择个
体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌(roulett
e wheel)模型。
(2) 交叉算子(Crossover): 交叉算子将被选中的两个个体的基因链按概率pc进行交叉
,生成两个新的个体,交叉位置是随机的。其中Pc是一个系统参数。
(3) 变异算子(Mutation): 变异算子将新个体的基因链的各位按概率pm进行变异,对
二值基因链(0,1编码)来说即是取反。
上述各种算子的实现是多种多样的,而且许多新的算子正在不断地提出,以改进GA的
某些性能。系统参数(个体数n,基因链长度l,交叉概率Pc,变异概率Pm等)对算法的收敛速度
及结果有很大的影响,应视具体问题选取不同的值。
GA的程序设计应考虑到通用性,而且要有较强的适应新的算子的能力。OOP中的类的继
承为我们提供了这一可能。
定义两个基本结构:基因(ALLELE)和个体(INDIVIDUAL),以个体的集合作为群体类TP
opulation的数据成员,而TSGA类则由群体派生出来,定义GA的基本操作。对任一个应用实
例,可以在TSGA类上派生,并定义新的操作。
TPopulation类包含两个重要过程:
FillFitness: 评价函数,对每个个体进行解码(decode)并计算出其适应度值,具体操
作在用户类中实现。
Statistic: 对当前群体进行统计,如求总适应度sumfitness、平均适应度average、最好
个体fmax、最坏个体fmin等。
TSGA类在TPopulation类的基础上派生,以GA的系统参数为构造函数的参数,它有4个
重要的成员函数:
Select: 选择算子,基本的选择策略采用轮盘赌模型(如图2)。轮盘经任意旋转停止
后指针所指向区域被选中,所以fi值大的被选中的概率就大。
Crossover: 交叉算子,以概率Pc在两基因链上的随机位置交换子串。
Mutation: 变异算子,以概率Pm对基因链上每一个基因进行随机干扰(取反)。
Generate: 产生下代,包括了评价、统计、选择、交叉、变异等全部过程,每运行一
次,产生新的一代。
SGA的结构及类定义如下(用C++编写):
[code] typedef char ALLELE; // 基因类型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 个体定义
class TPopulation{ // 群体类定义
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 评价函数
virtual void Statistics(); // 统计函数
};
class TSGA : public TPopulation{ // TSGA类派生于群体类
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 产生新的一代
};
用户GA类定义如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况
也不同。在实验中参数一般选取如下:个体数n=50-200,变异概率Pm=0.03, 交叉概率Pc=
0.6。变异概率太大,会导致不稳定。
参考文献
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陈根社、陈新海,"遗传算法的研究与进展",《信息与控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"采用遗传算法自学习模型控制规则",《自动化理论、技术与应
用》,中国自动化学会 第九届青年学术年会论文集,1993, PP233-238
● 方建安、邵世煌,"采用遗传算法学习的神经网络控制器",《控制与决策》,199
3,8(3), PP208-212
● 苏素珍、土屋喜一,"使用遗传算法的迷宫学习",《机器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993