当前位置:首页 » 遗传因素 » 遗传系统进化

遗传系统进化

发布时间: 2021-03-07 03:10:53

遗传与进化的关系

生物的遗传和变异都是普遍存在的,在遗传的过程中出现可遗传的变异,而这种变异经过自然选择,优良性状和基因再通过遗传得以累积,表现出进化

② 进化 遗传

若然是有性生殖,则在形成配子的期间有可能发生可遗传的变异.通过这些突变将一些新性状遗传到下一代
无性生殖则因为没有这个过程,变异的机率相对较小,除非外部环境影响,如紫外线照射等

③ 系统进化和系统发育是不是指同一个概念

不是,系统进化是以突变为基础进行的不可预见的发展过程,而
系统发育
是按照
遗传基因
的确定程序可预见的发展过程

④ 进化的遗传

DNA结构,碱基位于中心,外侧环绕着由磷酸根与糖类所形成的双螺旋。生物体的遗传是发生在一些不连续性状上,也就是生物的特定特征。以人类为例,眼睛的色彩是一项特征,可遗传自父母中的一个。遗传性状由基因控制,而在生物个体基因组中完整的一套基因,则成为基因型。
完整的一套可观察性状,可形成生物的构造或是行为,称为表现型。这些性状来自基因型与环境的交互作用。因此生物体的表现型并非完全来自遗传,例如皮肤的晒黑情况,是决定于个人的基因型与阳光的照射。每个人之所以对阳光有不同的反应,是因为基因型的差异,较显著的例子是拥有白化性状的个体,这类个体不会晒黑,且相当容易晒伤。
基因是DNA分子中一些含有遗传信息的区域,DNA则是含有四种碱基的长链分子。不同的基因具有不同的碱基序列,这些序列以编码形式形成遗传讯息。细胞里的DNA长链会与蛋白质聚集形成一种染色体的构造,染色体上的特定位置,称作基因座(locus)。有时基因座上的序列在不同个体之间有所差异,这些各式各样的变化型态称为等位基因(allele)。突变可使基因序列改变,产生新的等位基因。当突变发生时,新形成的等位基因可能会影响此基因所控制的性状,使表现型改变。不过单一等位基因对应单一性状的情形较少,多数的性状更为复杂,而且是由许多进行交互作用的基因来控制的。 突变
突变是指遗传的物质发生改变,广义的突变包括染色体数目和结构变异。不过一般所说的突变,是核酸序列的改变,也就是基因突变。基因突变是产生遗传变异的最根本原因,细胞中的遗传物质(通常是脱氧核糖核酸或核糖核酸)能够经由许多方式改变,例如细胞分裂时的复制错误、放射线的照射、化学物质的影响或是病毒感染。多细胞生物的基因突变,可依照发生的细胞种类分为两种。生殖细胞突变能够遗传到下一代,体细胞突变则通常限制在个体中。
基因突变可能对个体有害,也可能对个体有益,或是两者兼具。有害的隐性基因因为不会出现症状而被保留,当这些隐性基因配成对时,就可能使个体得到病变或是死亡。有一些基因虽然可能会造成病变,但是也可以使个体具有某些优势,例如带有一个镰刀型红血球疾病基因的人,对疟疾更有抵抗力。
对生物个体无益也无害的突变称为中性突变,在族群中的出现频率主要受到突变机率影响 。由于这些突变不影响个体的生存机会,因此大多数物种的基因组在没有天择的状况下,依然会有稳定数量的的中性突变不断发生。单一碱基对的变换称为点突变,当一个或多个碱基对插入或是删除时,通常会使基因失去作用。
转座子(transposon)是生物的基因组片段,并且在基因组的演化上扮演重要角色。它们能够移动并插入基因组中,或是取代原有的基因,产生演化上的变异和多样性。DNA复制也被认为每百万年间,会在动物的基因组中产生数十到数百的新基因。
重组
在无性生殖的过程中,染色体上的任何一对等位基因都会遗传到下一代。但是对于行有性生殖的物种而言,亲代同源染色体中的等位基因,在制造生殖细胞的减数分裂过程中,会发生基因重组。这是一种不同的脱氧核糖核酸段落断裂并重新组合的过程。
原核生物之间能够透过接合等方式,直接交换彼此的基因,因此重组在原核生物中也比较常见。而较复杂的动物与植物,则通常是在制造生殖细胞的减数分裂时期,因为染色体的交接(crossover)而发生重组。减数分裂重组的发生频率较低,而且排列位置较接近的等位基因,也较不易交换。因此可以由等位基因的重组率计算出基因的相对位置。
此外有性生殖中的孟德尔遗传规则,能够使有害的突变被清除,有益的突变被保留。当一个等位基因无法进行基因重组时(例如孤立的Y染色体),则不具有清除有害突变的效果,其有害突变逐渐累积,使族群的有效族群大小(effective populationsize/Ne)缩减,这种现象称为希尔—罗伯森效应(Hill-Robertsoneffect)。若是染色体逐渐退化,则称为缪勒氏齿轮(Muller'sratchet),这种现象比较容易出现在无性生殖的生物中。 概述
遗传变异一方面经由生殖而传递到下一个世代(被称为垂直基因转移),另一方面也可以透过水平基因转移(horizontal gene transfer/HGT),在物种之内或是物种之间传递。尤其是细菌经常使用这种方式交换基因,研究发现可能有跨物种的水平基因转移存在。基因流(geneflow)则是指基因在生物个体之间转移。
基因型
基因型(遗传因子)是产生表现型(外在表现)的根本。而表现型本身也拥有表型可塑性(phenotypicplasticity),能够在基因型未改变的状况下有所变化,并且能够遗传到下一世代。除了基因本身的改变,染色体的重新排列虽然不能改变基因,但是能够产生生殖隔离,并使新物种形成。
一般来说,选择包括了“天择”(自然选择)与“性择”(性选择)。天择的主要原因是物种所居住环境的改变,包括物种之间关系的变化;性择则是物种在繁殖的需求下而产生的选择。而这些性择所留下的性状,可能会有害于个体本身的生存能力。各种选择的分类事实上并不明确,也有一些分类以天择表示所有选择作用,并分为生态选择(ecological selection)与性择。
基因流
基因流也称为迁移(migration),当族群之间并未受到地理或是文化上的阻碍时,基因变异会经由一些个体的迁移,使基因在不同族群间扩散,这样的情形称为基因流。恩斯特·麦尔认为基因流类似一种均质化(homogenising)的过程,因此能够抵销选择适应的作用。当基因流受到某种阻碍,例如染色体的数目或是地理的隔阂,便会产生生殖隔离,这是物种形成的条件之一。
族群中等位基因的自由移动,也受到族群结构的阻碍,例如族群的大小或是地理分布。虽然理想状态中族群的生殖对象完全自由且完全随机,但是现实世界中并非如此,因此地理上的亲近程度会对这些基因的移动造成庞大的影响。而且当迁移数量较少的时候,基因流对演化的影响也较低。
遗传漂变
基因漂变指的是族群中等位基因频率在每一个世代之间的随机的变化。这种变化能够以数学表达,哈蒂-温伯格平衡描述了理想状态情况下(不考虑天择等因素)的数学模型。在理想状态中,后代的等位基因频率将接近随机分布。当族群规模较大,基因漂变的机率会较低;当族群规模较小的时候,基因漂变的现象较为明显。
当一个少数族群从原先族群之中分离而出,且两者的基因频率有所不同,若分离而出的少数族群与原先族群的基因无法继续交流,则两者的基因频率将渐行渐远。这种现象称为奠基者效应。例如从德国迁移到美国宾夕法尼亚的阿米什人,起源大约仅有200人,且习惯族内通婚。这个族群的埃利伟氏综合症(Ellis-van Creveld syndrome)出现频率较其他族群高。
水平基因转移
以16SrRNA的基因序列所建立的种系发生树,将生物演化历程分为三域系统,包括细菌、古菌与真核生物。第一个提出这种分类的是卡尔·乌斯(Carl Woese)。由于水平基因转移的存在,使生物的亲源关系可能复杂许多。
水平基因转移(horizontalgenetransfer/HGT),是个体将遗传物质传递到其它非本身后代个体的过程。这种机制使遗传物质得以在无直系关系的个体之间产生基因流。
水平基因转移也可以经由抗原转移(antigenicshift)、基因重整(reassortment)与杂交反应(hybridisation)等现象观察。病毒能够透过转导作用(transction)在物种间传递基因。细菌则能够与死亡的细菌合体、经由转形作用(transformation),以及与活细菌进行接合(conjugation),而获得新的基因。而新的基因则能够以质体的形式,加入宿主细菌的基因组中。杂交的现象在植物中最显着,此外已知还有10种以上的鸟类物种能够杂交。另外在哺乳动物与昆虫中,也有杂交的例子,只是通常杂交所生的后代不具有生殖能力。HGT也是细菌传递抗药性的方式之一,而且有些发现表明HGT是原核生物与真核生物的演化重要机制。
由于HGT的存在,使种系发生学更加复杂,也使早期物种的演化过程出现一种隐藏关系(metaphor)。遗传资讯在生殖作用之外,也能在物种之间传递。这使科学家必须在解释演化关系的时候,表达出物种的隐藏关系,并且将不同的演化历程组合起来。
自然选择
孔雀花枝招展的尾羽,是性择的代表性例证,一方面使它容易成为被猎食的目标,另一方面又能够吸引雌性。
由于各种基因的变异,使同一个族群中,不同个体的生存方式和繁殖方式有所不同。当环境发生改变,便会产生天择作用。之所以称为天择,是因为这种选择并非如基因漂变或基因突变一样随机,当环境改变发生时,将只有某些带有特定特征的群体能够通过这些考验。天择有一些特例,如被视为与天择拥有相等地位的选择方式,其中包括性择、人择等等。
性择指某个体比其它个体拥有较高的繁殖机会,因此它们的基因会被保留,使后代继续保有相同的优势。人择指人类为了本身的生存或是喜好而对不同的基因变异进行筛选,通常发生在农业、畜牧业或是宠物的育种上。此外,优生学则是人类对人类所进行的筛选行为。不过人类事实上只是自然界的一部分,因此人择与并天择没有质的分别。
这些特殊的选择机制,导致生物产生的适应环境的有益特征,并非会在演化过程中一定出现或是被保留。代表性生物有只能吃尼龙的尼龙菌,再如,拥有更多的手指对人类的生活可能会更加方便,但是这种方便几乎不会增加任何繁殖机会。
自然选择能使有利于生存与繁殖的遗传性状变得更为普遍,并使有害的性状变得更稀有。这是因为带有较有利性状的个体,能将相同的性状转移到更多的后代。经过了许多世代之后,性状产生了连续、微小且随机的变化,自然选择则挑出了最适合所处环境的变异,使适应得以发生。遗传漂变使性状在种群中所占比例产生的一些随机变化,来自一些使个体能够成功繁殖的偶然因素。

⑤ 遗传与进化的关系

生物的遗传和变异都是普遍存在的,在遗传的过程中出现可遗传的变异,而这种变异经过自然选择,优良性状和基因再通过遗传得以累积,表现出进化

⑥ 分子系统发育与分子进化有什么区别和联系

分子进化(Molecular Evolution)(Molecular Evolution)(Molecular Evolution)(Molecular Evolution)与系统发育分析
系统发育学研究的是进化关系,系统发育分析就根据同源性状的分歧来推断或者评估这些进化关系。通过系统发育分析所推断出来的进化关系一般用分枝图(进化树) 来描述,这个进化树描述了分子(基因树)、物种以及二者之间遗传关系的谱系。由于“Glade”这个词(拥有共同祖先的同一谱系)在西腊文中的本意是分支,所以系统发育学有时被称为遗传分类学(cladistics) 。
在现代系统发育研究中,重点己不再是生物的形态学特征或其他特征,而是生物大分子尤其是序列,对序列的系统发育分析又称为分子系统学或分子系统发育研究。它的发展得益于大量序列的测定和分析程序的完善。比起许多其他实验性学科,分子系统学与其他进化研究一样有其局限,即系统发育的发生过程都是己经完成的历史,只能在拥有大量序列信息的基础上去推断过去曾经发生过什么,而不能再现。由于系统发育分析不太可能拥有实验基础,至多是些模拟实验或者病毒实验:如何处理序列从中得到有用信息、如何用计算的办法得到可信的系统树、如何从有限的数据得到进化模式成为这个领域的研究热点。
1进化树构建
构建进化树的方法包括两种:一类是基于序列类似性比较,主要是基于氨基酸/核酸相对突变率矩阵计算不同序列差异性积分作为它们的差异性量度而构建的进化树;另一类是在难以通过序列比较构建进化树的情况下,通过蛋白质结构比较包括刚体结构叠合和多结构特征比较等方法建立的进化树。
2评估进化树和数据
现在己经有一些程序可以用来评估数据中的系统发育信号和进化树的健壮性。对于前者,最流行的方法是用数据信号和随机数据作对比实验(偏斜和排列实验):对于后者,可以对观察到的数据重新取样,进行进化树的支持实验(非参数自引导和对折方法)。似然比例实验可以对取代模型和进化树都进行评估。本文只阐述几个常用的方法:
偏斜实验(Skewness Test):统计的临界值随着分类群数口的不同和序列中点的不同而不同,对随机数据集呈现的信号很敏感,可以用来决定系统发育信号是否保留着。
排列实验(PTP, permutation tail probability):对MP树的分值和那些通过对每一个位点都进行大量排列组合而得到的数据所推算出来的进化树的分值进行比较,从而决定在原始数据中是否存在系统发育信号。
自引导评估(bootstrap ): Bootstrap是由Felsenstein (1985)引入分子分类领域的,现己成为分析分子树置信区间最常用的方法。其原理是假定某序列Ao有N个位点,Bootstrap复制时从Ao中随机取N个位点。Ao中的某些位点可能被随机遗漏,而某些位点则可能取到不仅一次,由此组成一个新序列A1。对一组数据复制n次,则可得到Ao衍生的n组数据。由此可构建n个分子树,根据“多数规则”( majority rule)从这n个分子树中统计得到一致树(consensus tree ),一致树中各分支结构在n个分子树中出现的比率便表示原始数据对该结构的支持率。
可以对任何建树方法进行评估。模拟研究表明,在合适的条件下也就是各种替换速率基本相等,树枝基本对称的条件下,如果自引导数值大于70,那么所得的系统发育进化树能够反映真实的系统发生史的可能性要大于95 % 。
3 线性树(Linearized Tree)
在进化中,虽然核酸或氨基酸的替代绝不会是严格恒定的,但是在估计序列间分歧时间方面,分子钟依然有用。当今我们对物种间的分歧时间或基因重复事件发生的时间仍知之甚少,因此为了理解进化过程,即便粗略地估计分歧时间也是十分重要的。排除比平均速率显著慢或快的谱系,并对剩余的谱系按分子钟假说构建进化树,就有可能估计不同谱系对间或不同序列对间粗略的分歧时间。按此途径构建的树称为线性树。线性树始终遵循分子钟假说。线性树的构建分如下几个步骤:(1)用无需速率恒定假说的构树法对一组序列构建可靠的树,并用外类群序列定出树根。(2)对所用序列检验速率恒定假说,并删除与平均速率有显著偏差的序列。 (3)用速率恒定假说对剩余的序列重建一棵系统树。(4)如果己知某一序列对的分歧时间和序列分歧度,则能标定进化时间。
进化树的构建方法
1 建立数据模型
建立一个比对模型的基本步骤包括:选择合适的比对程序,然后从比对结果中提取系统发育的数据集,至于如何提取有效数据,取决于所选择的建树程序如何处理容易引起歧义的比对区域和插入/删除序列(即所谓的空位状态)。一个典型的比对过程包括:首先应用CLUSTALW程序及类似程序,进行多序列比对,最后提交给一个建树程序。这个过程有如下特征选项:①部分依赖于计算机;②需要一个先验的系统发育标准(即需要一个前导树);③使用先验评估方法和动态评估方法对比对参数进行评估;④对基本结构(序列)进行比对;⑤应用非统计数学优化。这些特征选项的取舍依赖于系统发育分析方法。
2 决定替代模型
替代模型既影响比对,也影响建树。因此需要采用递归方法。对于核酸数据而言,可以通过替代模型中的两个要素进行计算机评估,但是对于氨基酸和密码子数据而言,没有什么评估方案,其中一个要素是碱基之间相互替代的模型。另外一个要素是序列中不同位点的所有替代的相对速率。还没有一种简单的计算机程序可以对较复杂的变量(比如,位点特异性或者系统特异性替代模型)进行评估,同样,现有的建树软件也不可能理解这些复杂变量。
(1)碱基取代模型。
一般而言,生物化学性质相近的碱基之间的取代频率较高。在DNA中,四种转换(A→G,G→A,C→T,T→C)的频率比颠换(A→C,A→T,C→G,G→T)以及它们的反向取代的频率要高。这些偏向会影响两个序列之间的预计分歧。各残基之间的相对取代速率一般用矩阵形式给出:对碱基而言,行和列都是4,对于氨基酸,行和列都是20(如PAM矩阵)。对于密码子,行和列都是61(除去终止密码子)。矩阵中对角元素代表不同序列拥有相同碱基的代价,非对角线元素对应于一个碱基变为另一个碱基的相对代价。固定的代价矩阵就是典型的静态权重矩阵,MP法中使用的就是这种,如图5。又如在ML法中,代价值是山即时的速率矩阵得到,如图6,这个矩阵代表了各种取代可能会发生的概率的ML估计值。
图6中,非对角线兀素an代表一个变化的瞬时速率、不同取代之间的相对速率和目标碱基的频率。而对角线兀素是非零值,很有效说明了一种可能性,即序列之间的分歧度越大,越有可能在很偶然的情况下拥有相同的碱基。还有一种模型称为“时间可逆”,认为“前进”和“进化”的取代速率相同。任何一种“时间可逆”的核葺酸取代模型都可以用图2-5的矩阵来刻画,只用其中任何一个速率和其他任何速率的差异即可,在任意组合中,最多可达6个参数,每个速率参数都是独立的。图5 权重矩阵
(2)位点之间取代速率模型。
除了前面取代模型的多元化外,序列中各个不同位点之间的取代速率差异也会对进化树的结果产生深远影响。关于位点之间的速率差异(位点异质性),一个最明显的例子就是在三联体编码中,第三个编码位点比前两个更加容易发生变化。在分析编码序列时,许多发育分析都会将第三个位点排除:然而在某些情况下,速率差异模型会更加敏锐,如rRNA的保守序列。对位点差异的取代速率予以估值的方法有非参数模型、不变式模型和Gamma模型。非参数模型在MP法中使用,对ML法被认为在计算上不可行。不变式模型对一定比例的位点进行估值,而这些位点不能自由变化,其余的位点假定为等概率变化。Gamma模型假定一给定序列变化的概率服从Gamma分布,据此指定位点的取代概率。Gamma分布的形状决定于其参数,描述了一个序列中各个位点的取代频率分布。目前DNA的替代模型有十种之多,再加上不变位点参数和形状分布参数。Gamma,模型更有几十种之多, 几种有代表性的替代模型是JC, F81, K80, HKY和GTR。
(3)取代模型的选择
最好的取代模型并不一定总是拥有最多参数的模型。因为对每一个参数进行估值都会引入一个相关变量,从而使整体的变数增加,有时甚至会对模型起到抑制作用。在PAt中可以对DNA序列的取代模型进行规范一个较好的策略,使用似然法同时评估几个,可逆的取代速率、gamma分布的形状参数和不变位点的比例。通过估算的取代参数,可以通过比较较多参数和较少参数分别评估得到的似然分值,决定一个简化的模型是否合理。目前较好的选择模型方法是似然比检验(LikelihoodRatio Test)
3建树方法
目前,三种主要的建树方法分别是距离法(如Neighbor joining , NJ) 、最大简约(Maximum parsimony, MP )和最大似然(Maximum likelihood ML)。最大似然方法考察数据中序列的多重比对结果,优化出拥有一定拓扑结构和树枝长度的进化树,这个进化树能够以最大的概率导致考察的多重比对结果。距离法考察数据组中所有序列的两两比对结果,通过序列两两之间的差异决定进化树的拓扑结构和树枝长度。最大简约方法考察数据组中序列的多重比对结果,优化出的进化树能够利用最少的离散步骤去解释多重比对中的碱基差异。距离方法简单地计算两个序列的差异数量。这个数量被看作进化距离,而其准确大小依赖于进化模型的选择。然后运行一个聚类算法,从最相似(也就是说,两者间的距离最短)的序列开始,通过距离值方阵计算出实际的进化树,或者通过将总的树枝长度最小化而优化出进化树。
用最大节约方法搜索进化树的原理是要求用最小的改变来解释所要研究的分类群之间的观察到的差异。 最大似然方法是评估所选定的进化模型能够产生实际观察到的数据的可能性。进化模型可能只是简单地假定所有核苷酸(或者氨基酸)之间相互转变的概率一样。程序会把所有可能的核苷酸轮流置于进化树的内部节点上,并且计算每一个这样的序列产生实际数据的可能性(如果两个姐妹分类群都有核苷酸+ A‑,那么,如果假定原先的核苷酸是“C",得到现在的“A-’的.可能性比起假定原先就是“A+’的可能性要小得多)。所有可能的再现(不仅仅是比较可能的再现)的几率被加总,产生一个特定位点的似然值,然后这个数据集的所有比对位点的似然值的加和就是整个进化树的似然值。
4 进化树搜索
单一的进化树的数量会随着分类群数量的增长而呈指数增长,从而变为一个天文数字。由于计算能力的限制,现在一般只允许对很小一部分可能的进化树进行搜索。具体的数量主要依赖于分类群的数量、优化标准、参数设定、数据结构、计算机硬件以及计算机软件。
现在有两种搜索方法保证可以找到最优化的进化树:穷举法(exhaustivealgorithms)和树枝一跳跃法(BB, branch -and-band)。对于一个很大的数据集,这两种方法都很不实用。对分类群数量的限制主要取决于数据结构和计算机速度,但是对于超过20个分类群的数据集,BB方法很少会得到应用。穷举法要根据优化标准,对每一个可能的进化树进行评估。BB方法提供一个逻辑方法,以确定哪些进化树值得评估,而另一些进化树可被简单屏蔽。因此BB方法通常要比穷举法快得多。
绝大多数分析方法都使用“启发式”的搜索。启发式算法(heuristic algorithms搜索出相近的次优化的进化树家族(“岛屿”),然后从中得到优化解(“山顶”)。不同的算法用不同程度的精确性搜索这些岛屿和山顶。最彻底也是最慢的程序(TBR, treebisection-reconnection,进化树对分重接)先把进化树在每一个内部树枝处劈开,然后以任意方式将劈开的碎片重新组合起来。最快的算法(NNI , nearest-neighborinterchange)只是检查一下相邻终端的不太重要的重新组合。因此,倾向于找到最近的岛屿的山顶。
降低搜索代价的最好方法是对数据集进行剪除。影响优化搜索策略选择的因素(数据量数据结构,时间量,硬件,分析口的)太复杂,无法推荐一个简单可行的处方。因此,进行搜索的用户必须对数据非常熟悉且有明确的口标,了解各种各样的搜索程序及自己硬件设备和软件的能力。
除上述当前应用最广的方法外,还有大量的建立和搜索进化树的其它方法。这些方法包括Wagner距离方法和亲近方法(距离转化方法):Lake的不变式方法(一个基于特征符的方法,它选择的拓扑结构包含一个意义重大的正数以支持颠换):Hadamard结合方法(一个精细的代数方阵方法,对距离数据或者观察到的特征符进行修正):裂解方法(这个方法决定在数据中应该支持哪一个基于距离的.IJ选的拓扑结构):四重奏迷惑(Quartet puzzling)方法,该法,可以为ML,建树方法所应用,这个算法相对而言是个较快的进化树搜索算法。
5 确定树根
上述的建树方法所产生的都是无根树(进化树没有进化的极性)。为了评估进化假说,通常必须要确定进化树的树根。确定系统发育进化树的树根并不是个简单问题。一种确定树根的好方法就是分析时加入一个复制的基因。如果来自绝大多数物种或者所有物种的所有的平行基因在分析时都被包含进去,那么从逻辑上我们就可以把进化树的树根定位于平行基因进化树的交汇处,当然要假定在所有进化树中都没有长树枝问题。

⑦ 高中生物 遗传进化

(2)F2代的矮茎红果的基因型是1/3ddRR和2/3ddRr,也就是1/3RR和2/3Rr,所以R的基因频率是2/3,也就是66.7%。

(3)F1是二倍体版的,如果权在苗期进行染色体加倍,则为四倍体,这样的植株与原来的二倍体植株杂交,得到的后代是三倍体,是不育的,根据物种的概念可知,F1加倍后的植株与原来的植株是两个不同的物种,因为两者间存在着生殖隔离。

(4)如果亲本产生F1的过程中,D所在的同源染色体不分离,会形成两种配子,DDR和R,这两种配子与另一亲本产生的配子dr结合,形成的后代是DDdRr(高茎红果)和dRr(矮茎红果)。

⑧ 什么是生物的系统进化越详细越好!

进化分类学派以麦尔(May)、辛普森(Simpson)等人为代表。这一学派基本接受支序学派通过支序分析重建系统发育的方法(即支序分析方法)。支序分类学派和进化分类学派是当今动物分类学界的主流,两个学派之间的分歧在以下几个方面;
1)进化分类学派认为建立系统关系时,单纯依靠血缘关系(即分支的顺序,不能完全概括在进化过程中出现的全部情况。尚需考虑到各分支之间的进化程度。
2)进化分类学派认为凡起源于一个共同祖先的类群,均为单系群或单源群。
3)在方法论上,进化分类学派认为生物分类学家的工作是要分出动物的实际具体类群,支序学派的方法带有过多的形式逻辑成分,先验性太强。
4)在分类系统的安排上,进化学派指出支序学派的做法中,编级的层次太多,致使系统过于臃肿,在实践中无法使用。
A. 两栖类起源于古总鳍鱼,最早的两栖类是坚头类(鱼头螈)距今3.5亿年前的泥盆纪晚期,由于气候与地壳原因时大量的鱼类(肺鱼与总鳍鱼)要到陆地上生活。现代两栖类的共同祖先是无甲亚纲。
B. 爬行类由古两栖类的坚头类(石炭纪末)演化而来(在古炭纪末期,地球发生强烈的造山运动,是气候变干燥甚至沙漠,使大量两栖类灭绝或是重新回到水中),最原始的爬行类是杯龙类(蜥蜴等),由杯龙类演化出的两大类群,即始鳄类(古生代二叠纪,大部分便是现代爬行类,除了鱼龙类)与盘龙类(石炭纪末期至二叠纪)。
C. 鸟类在中生代侏罗纪从假鳄类演化而来,即起源于晚侏罗纪的小型兽脚类恐龙,始祖鸟和原鸟既有爬行类的特征也有鸟类的特征,是爬行类的向鸟类的过渡类型。现存鸟类是平胸总目、企鹅总目、突胸总目。
D. 爬行类中盘龙类后代中一支叫兽齿类,具有哺乳类的特征,是哺乳动物的原祖。原兽亚纲(鸭嘴兽)是现存哺乳类中最原始的类群,具有一系列接近于爬行类和不同于高等哺乳类的特征;后兽亚纲(灰袋鼠)是比较低等的哺乳类,高等哺乳类群是真兽亚纲,分为18个目,都为现存种类。
从化石与达尔文进化学说来看,爬行类与现代两栖类都来源于古两栖类,而古代爬行类是现代爬行类、哺乳类和鸟类的共同祖先。从而得到与支序分类学不一样的系统树如下所示:
进化分类学
综上可以看出支序分类学与进化分类学的区别,也使我们更好地掌握动物的系统发育

这是从进化分类学上来讲生物的系统进化.这是我自己以前写的,可能很不全面.

⑨ 关于高中生物遗传进化

我的意思是说突变的基因本来就存在于该物种基因库的吗?那基因突变产生的新基因对种群来讲就不是新的了么?

你是正确的!

热点内容
法国电影小男孩在农场遇到一只白狗 发布:2024-08-19 08:36:47 浏览:594
微光上有什么恐怖片 发布:2024-08-19 05:25:40 浏览:915
穿越香港鬼片灭鬼的小说 发布:2024-08-19 03:36:10 浏览:833
恶之花都敏秀姐姐扮演者 发布:2024-08-19 02:22:07 浏览:321
thai好看电影 发布:2024-08-18 11:34:37 浏览:795
电影内容女的是傻子容易尿裤子,男的很穷单身汉 发布:2024-08-18 10:31:36 浏览:129
双机巨幕厅和4k厅哪个好 发布:2024-08-18 10:18:41 浏览:818
日本僵尸片上世纪 发布:2024-08-18 07:32:00 浏览:537
怪物 韩国电影在线 发布:2024-08-18 03:49:17 浏览:491
第九区一样的 发布:2024-08-17 23:16:05 浏览:528