宠物遗传性状
㈠ 折耳猫,控制折耳性状的到底是显性基因还是隐性基因
纯种的折耳猫是Scottish Fold,这个基因在该种猫是显性遗传的。这个基因影响全身软骨的发育,所以是一种病态。
“我知道折立猫是折耳猫与纯种美短/英短配种所产下的后代”。这句话不全对。最早的折耳猫(60年代)只有在英国有,全部是来源于一只叫做Susie的母猫。这只母猫有耳朵的软骨发育不良。后代有长毛有短毛。但是由于对其他伴发疾病的担忧,该品种一直不被认可。后来到了70年代,人们把折耳猫带到美国,使用英短和美短来配种。
影响折耳的基因,说起来是显性的,但是是一个不完全显性。2008年的一篇文献对这个有研究。
http://www.ncbi.nlm.nih.gov/pubmed/18339089
起初的折耳猫只有一只耳朵打折,后来经过不断的育种,现在打折的比例和程度都越来越高了。
你说的产出的立耳猫,是因为它体内的一对基因都是正常的,所以表现正常(不是什么折立猫)。
纯种的折耳猫(纯合子)由于会有严重的健康问题,所以一般有道德标准的人不培育,只培育带有一半基因的杂合子。杂合子和正常健康的猫交配,产生折耳和正常猫的比例各是50%。
㈡ 还有什么转基因宠物
转基因宠物复是转基因动物制 :将外源重组基因转染并整合到动物受体细胞基因组中,从而形成在体表达外源基因的动物,称为转基因动物。转基因动物表达系统,包括外源基因、表达载体和受体细胞等,基因组的转移则是细胞核移植和动物克隆技术,人工合成与设计基因、全基因乃至基因组的转基因技术是合成生物学。
㈢ 宠物杂交危害及坏处
1.宠物杂交,会导致生出来的宠物基因不稳定。
2.基因不稳定,会导致各种天生性疾病。
3.基因不稳定,还会造成宠物容易夭折。
㈣ 宠物猫可以通过牺牲血统纯正来修复一些遗传缺陷吗
这个应应该不可以的 目前没有这样的研究成果
㈤ 动物杂交到底有没有风险
动物杂交到底有没有风险?
大家都知道,农作物的杂交可以让两个农作物品种的优势在杂交出来的新品种上展现,可以如果让动物杂交会是什么样呢?动物杂交是怎么回事,有风险吗?为什么人类要让动物杂交?
这也表明,杂交这项技术本身运用的好是能带来好处的,可是这就需要人们在选择杂交种类的时候进行甄别,要培育出健康的能够生存得好的品种,只有这样,它们才能更好地适应环境,更好的生存下去。
回交实际上就是一把双刃剑,用得好既可以提高粮食和经济作物的产量造福人类,也能挽救濒危动植物,维护地球生物多样性;但用得不好则会带来严重灾难,尤其是动物的回交最为明显,至于有没有牵扯到伦理道德问题这个就需要从多维度加以定论。
㈥ 进化的遗传
DNA结构,碱基位于中心,外侧环绕着由磷酸根与糖类所形成的双螺旋。生物体的遗传是发生在一些不连续性状上,也就是生物的特定特征。以人类为例,眼睛的色彩是一项特征,可遗传自父母中的一个。遗传性状由基因控制,而在生物个体基因组中完整的一套基因,则成为基因型。
完整的一套可观察性状,可形成生物的构造或是行为,称为表现型。这些性状来自基因型与环境的交互作用。因此生物体的表现型并非完全来自遗传,例如皮肤的晒黑情况,是决定于个人的基因型与阳光的照射。每个人之所以对阳光有不同的反应,是因为基因型的差异,较显著的例子是拥有白化性状的个体,这类个体不会晒黑,且相当容易晒伤。
基因是DNA分子中一些含有遗传信息的区域,DNA则是含有四种碱基的长链分子。不同的基因具有不同的碱基序列,这些序列以编码形式形成遗传讯息。细胞里的DNA长链会与蛋白质聚集形成一种染色体的构造,染色体上的特定位置,称作基因座(locus)。有时基因座上的序列在不同个体之间有所差异,这些各式各样的变化型态称为等位基因(allele)。突变可使基因序列改变,产生新的等位基因。当突变发生时,新形成的等位基因可能会影响此基因所控制的性状,使表现型改变。不过单一等位基因对应单一性状的情形较少,多数的性状更为复杂,而且是由许多进行交互作用的基因来控制的。 突变
突变是指遗传的物质发生改变,广义的突变包括染色体数目和结构变异。不过一般所说的突变,是核酸序列的改变,也就是基因突变。基因突变是产生遗传变异的最根本原因,细胞中的遗传物质(通常是脱氧核糖核酸或核糖核酸)能够经由许多方式改变,例如细胞分裂时的复制错误、放射线的照射、化学物质的影响或是病毒感染。多细胞生物的基因突变,可依照发生的细胞种类分为两种。生殖细胞突变能够遗传到下一代,体细胞突变则通常限制在个体中。
基因突变可能对个体有害,也可能对个体有益,或是两者兼具。有害的隐性基因因为不会出现症状而被保留,当这些隐性基因配成对时,就可能使个体得到病变或是死亡。有一些基因虽然可能会造成病变,但是也可以使个体具有某些优势,例如带有一个镰刀型红血球疾病基因的人,对疟疾更有抵抗力。
对生物个体无益也无害的突变称为中性突变,在族群中的出现频率主要受到突变机率影响 。由于这些突变不影响个体的生存机会,因此大多数物种的基因组在没有天择的状况下,依然会有稳定数量的的中性突变不断发生。单一碱基对的变换称为点突变,当一个或多个碱基对插入或是删除时,通常会使基因失去作用。
转座子(transposon)是生物的基因组片段,并且在基因组的演化上扮演重要角色。它们能够移动并插入基因组中,或是取代原有的基因,产生演化上的变异和多样性。DNA复制也被认为每百万年间,会在动物的基因组中产生数十到数百的新基因。
重组
在无性生殖的过程中,染色体上的任何一对等位基因都会遗传到下一代。但是对于行有性生殖的物种而言,亲代同源染色体中的等位基因,在制造生殖细胞的减数分裂过程中,会发生基因重组。这是一种不同的脱氧核糖核酸段落断裂并重新组合的过程。
原核生物之间能够透过接合等方式,直接交换彼此的基因,因此重组在原核生物中也比较常见。而较复杂的动物与植物,则通常是在制造生殖细胞的减数分裂时期,因为染色体的交接(crossover)而发生重组。减数分裂重组的发生频率较低,而且排列位置较接近的等位基因,也较不易交换。因此可以由等位基因的重组率计算出基因的相对位置。
此外有性生殖中的孟德尔遗传规则,能够使有害的突变被清除,有益的突变被保留。当一个等位基因无法进行基因重组时(例如孤立的Y染色体),则不具有清除有害突变的效果,其有害突变逐渐累积,使族群的有效族群大小(effective populationsize/Ne)缩减,这种现象称为希尔—罗伯森效应(Hill-Robertsoneffect)。若是染色体逐渐退化,则称为缪勒氏齿轮(Muller'sratchet),这种现象比较容易出现在无性生殖的生物中。 概述
遗传变异一方面经由生殖而传递到下一个世代(被称为垂直基因转移),另一方面也可以透过水平基因转移(horizontal gene transfer/HGT),在物种之内或是物种之间传递。尤其是细菌经常使用这种方式交换基因,研究发现可能有跨物种的水平基因转移存在。基因流(geneflow)则是指基因在生物个体之间转移。
基因型
基因型(遗传因子)是产生表现型(外在表现)的根本。而表现型本身也拥有表型可塑性(phenotypicplasticity),能够在基因型未改变的状况下有所变化,并且能够遗传到下一世代。除了基因本身的改变,染色体的重新排列虽然不能改变基因,但是能够产生生殖隔离,并使新物种形成。
一般来说,选择包括了“天择”(自然选择)与“性择”(性选择)。天择的主要原因是物种所居住环境的改变,包括物种之间关系的变化;性择则是物种在繁殖的需求下而产生的选择。而这些性择所留下的性状,可能会有害于个体本身的生存能力。各种选择的分类事实上并不明确,也有一些分类以天择表示所有选择作用,并分为生态选择(ecological selection)与性择。
基因流
基因流也称为迁移(migration),当族群之间并未受到地理或是文化上的阻碍时,基因变异会经由一些个体的迁移,使基因在不同族群间扩散,这样的情形称为基因流。恩斯特·麦尔认为基因流类似一种均质化(homogenising)的过程,因此能够抵销选择适应的作用。当基因流受到某种阻碍,例如染色体的数目或是地理的隔阂,便会产生生殖隔离,这是物种形成的条件之一。
族群中等位基因的自由移动,也受到族群结构的阻碍,例如族群的大小或是地理分布。虽然理想状态中族群的生殖对象完全自由且完全随机,但是现实世界中并非如此,因此地理上的亲近程度会对这些基因的移动造成庞大的影响。而且当迁移数量较少的时候,基因流对演化的影响也较低。
遗传漂变
基因漂变指的是族群中等位基因频率在每一个世代之间的随机的变化。这种变化能够以数学表达,哈蒂-温伯格平衡描述了理想状态情况下(不考虑天择等因素)的数学模型。在理想状态中,后代的等位基因频率将接近随机分布。当族群规模较大,基因漂变的机率会较低;当族群规模较小的时候,基因漂变的现象较为明显。
当一个少数族群从原先族群之中分离而出,且两者的基因频率有所不同,若分离而出的少数族群与原先族群的基因无法继续交流,则两者的基因频率将渐行渐远。这种现象称为奠基者效应。例如从德国迁移到美国宾夕法尼亚的阿米什人,起源大约仅有200人,且习惯族内通婚。这个族群的埃利伟氏综合症(Ellis-van Creveld syndrome)出现频率较其他族群高。
水平基因转移
以16SrRNA的基因序列所建立的种系发生树,将生物演化历程分为三域系统,包括细菌、古菌与真核生物。第一个提出这种分类的是卡尔·乌斯(Carl Woese)。由于水平基因转移的存在,使生物的亲源关系可能复杂许多。
水平基因转移(horizontalgenetransfer/HGT),是个体将遗传物质传递到其它非本身后代个体的过程。这种机制使遗传物质得以在无直系关系的个体之间产生基因流。
水平基因转移也可以经由抗原转移(antigenicshift)、基因重整(reassortment)与杂交反应(hybridisation)等现象观察。病毒能够透过转导作用(transction)在物种间传递基因。细菌则能够与死亡的细菌合体、经由转形作用(transformation),以及与活细菌进行接合(conjugation),而获得新的基因。而新的基因则能够以质体的形式,加入宿主细菌的基因组中。杂交的现象在植物中最显着,此外已知还有10种以上的鸟类物种能够杂交。另外在哺乳动物与昆虫中,也有杂交的例子,只是通常杂交所生的后代不具有生殖能力。HGT也是细菌传递抗药性的方式之一,而且有些发现表明HGT是原核生物与真核生物的演化重要机制。
由于HGT的存在,使种系发生学更加复杂,也使早期物种的演化过程出现一种隐藏关系(metaphor)。遗传资讯在生殖作用之外,也能在物种之间传递。这使科学家必须在解释演化关系的时候,表达出物种的隐藏关系,并且将不同的演化历程组合起来。
自然选择
孔雀花枝招展的尾羽,是性择的代表性例证,一方面使它容易成为被猎食的目标,另一方面又能够吸引雌性。
由于各种基因的变异,使同一个族群中,不同个体的生存方式和繁殖方式有所不同。当环境发生改变,便会产生天择作用。之所以称为天择,是因为这种选择并非如基因漂变或基因突变一样随机,当环境改变发生时,将只有某些带有特定特征的群体能够通过这些考验。天择有一些特例,如被视为与天择拥有相等地位的选择方式,其中包括性择、人择等等。
性择指某个体比其它个体拥有较高的繁殖机会,因此它们的基因会被保留,使后代继续保有相同的优势。人择指人类为了本身的生存或是喜好而对不同的基因变异进行筛选,通常发生在农业、畜牧业或是宠物的育种上。此外,优生学则是人类对人类所进行的筛选行为。不过人类事实上只是自然界的一部分,因此人择与并天择没有质的分别。
这些特殊的选择机制,导致生物产生的适应环境的有益特征,并非会在演化过程中一定出现或是被保留。代表性生物有只能吃尼龙的尼龙菌,再如,拥有更多的手指对人类的生活可能会更加方便,但是这种方便几乎不会增加任何繁殖机会。
自然选择能使有利于生存与繁殖的遗传性状变得更为普遍,并使有害的性状变得更稀有。这是因为带有较有利性状的个体,能将相同的性状转移到更多的后代。经过了许多世代之后,性状产生了连续、微小且随机的变化,自然选择则挑出了最适合所处环境的变异,使适应得以发生。遗传漂变使性状在种群中所占比例产生的一些随机变化,来自一些使个体能够成功繁殖的偶然因素。
㈦ 宠物狗是否存在近亲结婚
存在的 只要是近亲 都有这个问题 这是从遗传角度来说的 基因分为隐形显性 而接近的基因会导致不好的性状(多为隐形)容易出现 比正常情况大几十甚至上百倍
㈧ 生物学家为什么让动物回交动物回交会有伦理问题吗
㈨ 为什么要让动物回交,“近亲”不会产生伦理问题吗
在1922年,生物学家为了改良植物的特性提出了一种育种方法——回交育种法,这种育种方法广泛应用于培养优良品种。
什么是回交育种?回交指的就是两个品种通过杂交之后,产生的子一代与其任意两个亲本中的一个再次进行杂交的一种育种方式。通俗来说,回交其实是近亲繁殖,让亲本与子代不断进行交配,通过轮回亲本来多次回交,从而获得理想的后代的育种方法。
科学家定义回交,指的是同一种物种之间有着血缘的关系,但还能够进行交配的原则,打个比方来说,父亲那一代和子代或者子孙一代来进行交配,但其后代不会有机型一说,反而血统还会更加纯正,这比较适用于一些高贵血统的繁育种族。
我们著名的杂交水稻就是回交得到的,而动物与植物一样是可以通过回交的手段获得,并且不会产生道德伦理问题。
㈩ 凡是折耳猫都会出现遗传病吗
不是 遗传病一般都是不正规繁育照成的 比如折耳猫配折耳猫 或者近亲回 或者近亲+折耳猫答
正常的 英短配折耳猫 美短配折耳猫 或者无血缘的真正折耳立耳猫配折耳猫 都不会出现这种问题
国人比较没有常识 也没有操守 还有拿加菲 布偶 暹罗配折耳猫的 只是让猫血统更加混乱让别的品种的疾病也混血到了折耳猫