真菌的载体
Ⅰ 真菌的定义
真菌(Fungus)一词的“拉丁文”Fungus (fungi)原意是蘑菇。
真菌是生物界中很大的一个类群,世界上已被描述的真菌约有 1万属12万余种(属与种都是单位,且属大于种),真菌学家戴芳澜教授估计中国大约有4万种(种为单位)。按照林奈(Linneaus)的两界分类系统,人们通常将真菌门,分为鞭毛菌亚门、接合菌亚门、子囊菌亚门、担子菌亚门和半知菌亚门。其中,担子菌亚门是一群多种多样的高等真菌,多数种具有食用和药用价值,如银耳、金针菇、竹荪、牛肝菌、灵芝等,但也有豹斑毒伞、马鞍、鬼笔蕈等有毒种。另外,半知菌亚门中约有300属是农作物和森林病害的病原菌,还有些属是能引起人类和一些动物皮肤病的病原菌,如稻瘟病菌,可以引起苗瘟、节瘟和谷里瘟等。(fungus;eumycetes)是具有细胞核和细胞壁的异养生物。其营养体除少数低等类型为单细胞外,大多是由纤细管状菌丝构成的菌丝体。低等真菌的菌丝无隔膜,高等真菌的菌丝都有隔膜,前者称为无隔菌丝(coenocytic hypha),后者称有隔菌丝(septate hypha)。在多数真菌的细胞壁中最具特征性的是含有甲壳质(chitin),其次是纤维素。常见的真菌细胞器有:线粒体,微体,核糖体,液泡,溶酶体,泡囊,内质网,微管,鞭毛等;常见的内含物有肝糖,晶体,脂体等。
在历史上,真菌曾被认为和植物的关系相近,甚至曾被植物学家认为就是一类植物,但真菌其实是单鞭毛生物,而植物却是双鞭毛生物。不同于有胚植物和藻类,真菌不进行光合作用,而是属于腐生生物——经由腐化并吸收周围物质来获取食物。大多数真菌是由被称为菌丝的微型构造所构成的,这些菌丝或许不被视为细胞,但却有着真核生物的细胞核。成熟的个体(如最为人熟悉的蕈)是它们的生殖器官。它们和任何可行光合作用的生物都不相关,反而跟动物很亲近,两者同属后鞭毛生物。因此,真菌被归类自成一界。
虽然很早就已经知悉真菌和动物的演化关系比植物要来得相近,但很长的一段时间里,植物学入门对它们的介绍仍然比动物学入门要深入得多。
真菌的形态多样,一般分为单细胞和多细胞,酵母菌属于单细胞,而霉菌和蕈菌(大型真菌)都属于多细胞的真菌,它们归属于不同的亚门。大型真菌是指能形成肉质或胶质的子实体或菌核,大多数属于担子菌亚门,少数属于子囊菌亚门。常见的大型真菌有香菇、草菇、金针菇、双孢蘑菇、平菇、木耳、银耳、竹荪、羊肚菌等。它们既是一类重要的菌类蔬菜,又是食品和制药工业的重要资源。
真菌的细胞既不含叶绿体,也没有质体,是典型异养生物。它们从动物、植物的活体、死体和它们的排泄物,以及断枝、落叶和土壤腐殖质中、来吸收和分解其中的有机物,作为自己的营养。真菌的异养方式有寄生和腐生。
真菌常为丝状和多细胞的有机体,其营养体除大型菌外,分化很小。高等大型菌有定型的子实体。除少数例外,真菌都有明显的细胞壁,通常不能运动,以孢子的方式进行繁殖。
常见的真菌感染多为白色念珠菌、阴道纤毛菌、放线菌等。盐水涂片中注意寻找真菌孢子、菌丝或纤毛菌丛。
Ⅱ 真菌的结构是什么
真菌中除了多细胞的蘑菇和霉菌外,还有单细胞的种类,如酵母菌。酿酒,做面包和蒸馒头都离不开酵母菌。
Ⅲ 大家做真菌的 要在真菌里面表达都是用 什么表达载体
设计引物加接头,扩增目的基因,连接到T载体上测序。正确无误,切下来,酶切载体质粒与目的基因连接,阳性克隆鉴定,测序无误后构建完毕
载体构建
一.原理
依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体
DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
二.操作步骤
1. 摇菌
取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。
2. 提质粒
依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。
3. 酶切
按下表加入试剂。
反应所需试剂 体积(单位:ul)
质粒 10
所需内切酶反应缓冲液 2
所需限制性内切核酸酶 1
H2O 7
将加好的EP管置于37℃保温1-2h。(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度)
4. 电泳检测
将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。
5. 连接
如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接,连接体系如下:
双蒸水 5μL
10×T4 DNA连接缓冲液 1μL
载体 2μL
酶切后的目的基因 1μL
T4DNA连接酶 1μL
总体积 10μL
置于温箱,12-16℃,保温8-16h
6. 转化
依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃,
12-16h。
7. 单克隆检测
(1)挑单克隆
先将AMP从冰箱中取出,待融化后,在3ml装有LB液体培养基的试管中加入3μL的
AMP,用枪头混匀;取1.5 mlEP管5支(依情况可以多挑几管),给每支管中加500μL上述培养液,然后用接种环(或黄枪头)挑单克隆,挑完后用枪吹打;之后,将挑好的菌摇4-5小时,至混浊即可。
(2)单克隆检测
以每管摇好的菌液为模板,以原有的引物进行PCR,然后将PCR产物跑电泳,观察电泳图像中那几管的条带正确,将正确条带相对应管的菌液再抽取100μL,加到3ml(有LB液体培养液,AMP+)试管中,过夜摇;第二天重摇,将摇好的菌取1ml于1.5mlEP管中送测序,并保种。
注:①挑单克隆时,一定要挑单一圆润的菌落,有卫星斑的不挑。
②别忘记往培养基中加AMP。
③用接种环挑菌后,要在酒精灯上反复灼烧,然后再进行下一次挑菌。
三.注意事项
1. 连接产物可短时间在-20℃保存,使用时可以取出进行后续实验;
2. 在细胞转化时,冰浴和热激要严格控制好时间;
3. 连接反应是DNA重组过程中的关键步骤,其成败的重要参数之一就是温度,因此要控
制好连接温度。
4.进行黏末端连接时,会产生一定数量的载体自身环化分子,导致转化菌中过高的假阳性克隆背景。针对这一问题,常采用牛小肠碱性磷酸酶(CIP)去掉载体的5’-磷酸以抑制DNA片段的自身环化。
参考:
刘进元,常智杰,赵广荣,等.分子生物学实验指导[M].北京:清华大学,2002
2. 周俊宜.分子生物学基本技能和策略[M].北京:科学,2003:117-120
3. 李海英,杨峰山,邵淑丽,等.现代分子生物学与基因工程[M].北京:化学工业,2008:138-142
4. 朱旭芬.基因工程实验指导[M].北京:高等教育,2006:134-139
Ⅳ 真菌是怎么分类的
1969年Whittaker提出了不同的分界方法,把生物界分为五界。1979年,陈世骧等内提出容了六界系统,加上病毒界。进入20世纪80年代,随着电子显微镜、分子生物学技术飞速发展和在生物学研究中的应用,导致了生物八界分类系统的出现,即真菌界、动物界、胆藻界、绿色植物界、眼虫动物界、原生动物界、藻物界、原核生物界。20世纪90年代,生物八界分类系统已被生物学家普遍接受。
Ⅳ 真菌表达载体和植物表达载体的区别
设计引物加接头,扩增目的基因,连接到T载体上测序。
Ⅵ 真菌表达载体怎么构建求 真菌表达载体构建的师兄师姐指点万分感谢
设计引物加接头,扩增目的基因,连接到T载体上测序。正确无误,切下来,酶切载体质粒与目的基因连接,阳性克隆鉴定,测序无误后构建完毕
载体构建
一.原理
依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体
DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
二.操作步骤
1. 摇菌
取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。
2. 提质粒
依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。
3. 酶切
按下表加入试剂。
反应所需试剂 体积(单位:ul)
质粒 10
所需内切酶反应缓冲液 2
所需限制性内切核酸酶 1
H2O 7
将加好的EP管置于37℃保温1-2h。(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度)
4. 电泳检测
将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。
5. 连接
如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接,连接体系如下:
双蒸水 5μL
10×T4 DNA连接缓冲液 1μL
载体 2μL
酶切后的目的基因 1μL
T4DNA连接酶 1μL
总体积 10μL
置于温箱,12-16℃,保温8-16h
6. 转化
依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃,
12-16h。
7. 单克隆检测
(1)挑单克隆
先将AMP从冰箱中取出,待融化后,在3ml装有LB液体培养基的试管中加入3μL的
AMP,用枪头混匀;取1.5 mlEP管5支(依情况可以多挑几管),给每支管中加500μL上述培养液,然后用接种环(或黄枪头)挑单克隆,挑完后用枪吹打;之后,将挑好的菌摇4-5小时,至混浊即可。
(2)单克隆检测
以每管摇好的菌液为模板,以原有的引物进行PCR,然后将PCR产物跑电泳,观察电泳图像中那几管的条带正确,将正确条带相对应管的菌液再抽取100μL,加到3ml(有LB液体培养液,AMP+)试管中,过夜摇;第二天重摇,将摇好的菌取1ml于1.5mlEP管中送测序,并保种。
注:①挑单克隆时,一定要挑单一圆润的菌落,有卫星斑的不挑。
②别忘记往培养基中加AMP。
③用接种环挑菌后,要在酒精灯上反复灼烧,然后再进行下一次挑菌。
三.注意事项
1. 连接产物可短时间在-20℃保存,使用时可以取出进行后续实验;
2. 在细胞转化时,冰浴和热激要严格控制好时间;
3. 连接反应是DNA重组过程中的关键步骤,其成败的重要参数之一就是温度,因此要控
制好连接温度。
4.进行黏末端连接时,会产生一定数量的载体自身环化分子,导致转化菌中过高的假阳性克隆背景。针对这一问题,常采用牛小肠碱性磷酸酶(CIP)去掉载体的5’-磷酸以抑制DNA片段的自身环化。
参考:
1. 刘进元,常智杰,赵广荣,等.分子生物学实验指导[M].北京:清华大学出版社,2002
2. 周俊宜.分子生物学基本技能和策略[M].北京:科学出版社,2003:117-120
3. 李海英,杨峰山,邵淑丽,等.现代分子生物学与基因工程[M].北京:化学工业出版社,2008:138-142
4. 朱旭芬.基因工程实验指导[M].北京:高等教育出版社,2006:134-139
Ⅶ 真菌的两大结构
真菌营养生长阶段的结构称为营养体。绝大多数真菌的营养体都是可分枝的丝状体,单根丝状体称为菌丝(hypha)。许多菌丝在一起统称菌丝体(mycelium)。菌丝体在基质上生长的形态称为菌落(colony)。菌丝在显微镜下观察时呈管状,具有细胞壁和细胞质,无色或有色。菌丝可无限生长,但直径是有限的,一般为2—30微米,最大的可达100微米。低等真菌的菌丝没有隔膜(septum)称为无隔菌丝,而高等真菌的菌丝有许多隔膜,称为有隔菌丝。此外,少数真菌的营养体不是丝状体。而是无细胞壁且形状可变的原质团(plasmodium)或具细胞壁的、卵圆形的单细胞。寄生在植物上的真菌往往以菌丝体在寄主的细胞间或穿过细胞扩展蔓延。
当菌丝体与寄主细胞壁或原生质接触后,营养物质因渗透压的关系进入菌丝体内。有些真菌如活体营养生物侵入寄主后,菌丝体在寄主细胞内形成吸收养分的特殊机构称为吸器(hauStorium)。吸器的形状不一,因种类不同而异,如白粉菌吸器为掌状,霜霉菌为丝状,锈菌为指状,白锈菌为小球状。有些真菌的菌丝体生长到一定阶段,可形成疏松或紧密的组织体。菌丝组织体主要有菌核(sclerotium)、子座(stroma)和菌索(rhizomorph)等。菌核是由菌丝紧密交织而成的休眠体,内层是疏丝组织,外层是拟薄壁组织,表皮细胞壁厚、色深、较坚硬。菌核的功能主要是抵抗不良环境。但当条件适宜时,菌核能萌发产生新的营养菌丝或从上面形成新的繁殖体。菌核的形状和大小差异较大,通常似绿豆、鼠粪或不规则状。子座是由菌丝在寄主表面或表皮下交织形成的一种垫状结构,有时与寄主组织结合而成。子座的主要功能是形成产生孢子的机构,但也有度过不良环境的作用。菌索是由菌丝体平行组成的长条形绳索状结构,外形与植物的根有些相似,所以也称根状菌索。菌索可抵抗不良环境,也有助于菌体在基质上蔓延。
有些真菌菌丝或孢子中的某些细胞膨大变圆、原生质浓缩、细胞壁加厚而形成厚垣孢子(chlamydospore)。它能抵抗不良环境,待条件适宜时,再萌发成菌丝。
当很多菌丝聚集在一起时,会组成真菌的营养体,即菌丝体。菌丝一般分为两类,一为无隔菌丝,即菌丝没有横隔壁,可视为一个单细胞,具有多个细胞核,如低等真菌中的根霉、毛霉、水霉等的菌丝。另一类是有隔菌丝,即菌丝具很多横隔壁,将其分隔成多个细胞,每个细胞中有1个、2个或多个细胞核。 无性繁殖(asexual reproction)是指营养体不经过核配和减数分裂产生后代个体的繁殖。它的基本特征是营养繁殖通常直接由菌丝分化产生无性孢子。常见的无性孢子有三种类型:
⑴游动孢子(zoospore):形成于游动孢子囊(zoosporangium)内。游动孢子囊由菌丝或孢囊梗顶端膨大而成。游动孢子无细胞壁,具1—2根鞭毛,释放后能在水中游动。
⑵孢囊孢子(sporangiospore):形成于孢囊孢子囊(sporangium)内。孢子囊由孢囊梗的顶端膨大而成。孢囊孢子有细胞壁,水生型有鞭毛,释放后可随风飞散。
⑶分生孢子(conidium)产生于由菌丝分化而形成的分生孢子梗(conidiophore)上,顶生、侧生或串生,形状、大小多种多样,单胞或多胞,无色或有色,成熟后从孢子梗上脱落。有些真菌的分生孢子和分生孢子梗还着生在分生孢子果内。孢子果主要有两种类型,即近球形的具孔口的分生孢子器(pycnidium)和杯状或盘状的分生孢子盘(acervulus)。 真菌的有性生殖
真菌并没有整条的性染色体 ,只有一些DNA片段起着相同的作用。这种DNA片段被称为“交配型位点”(MAT)或“性别位点”(sex loci)。依照这一点,将真菌的性别分为正、负两种。无论正负性别,它们都有同一个基因来解码HMG蛋白的位点蛋白。HMG蛋白(high-mobility group protein)也即高迁移率蛋白,它可以通过一种未知途径来调控性别差异。这种基因和Y染色体上发现的主要调控基因“sry”蛋白极其类似
真菌生长发育到一定时期(一般到后期)就进行有性生殖(sexualre proction)。有性生殖是经过两个性细胞结合后细胞核产生减数分裂产生孢子的繁殖方式。多数真菌由菌丝分化产生性器官即配子囊(gametangium),通过雌、雄配子囊结合形成有性孢子。其整个过程可分为质配(plasmogamy)、核配(karyogamy)和减数分裂(meiosis)三个阶段。
第一阶段是质配,即经过两个性细胞的融合,两者的细胞质和细胞核(N)合并在同一细胞中,形成双核期(N+N)。
第二阶段是核配,就是在融合的细胞内两个单倍体(haploid)的细胞核结合成一个双倍体的核(2N)。
第三阶段是减数分裂,双倍体(diploid)细胞核经过两次连续的分裂,形成四个单倍体的核(N),从而回到原来的单倍体阶段。经过有性生殖,真菌可产生四种类型的有性孢子。
⑴卵孢子(oospore):卵菌的有性孢子。是由两个异型配子囊——雄器和藏卵器接触后,雄器的细胞质和细胞核经授精管进入藏卵器,与卵球核配,最后受精的卵球发育成厚壁的、双倍体的卵孢子。
⑵接合孢子(zygospore):接合菌的有性孢子。是由两个配子囊以配子囊结合的方式融合成1个细胞,并在这个细胞中进行质配和核配后形成的厚壁孢子。
⑶子囊孢子(ascospore):子囊菌的有性孢子。通常是由两个异型配子囊——雄器和产囊体相结合,经质配、核配和减数分裂而形成的单倍体孢子。子囊孢子着生在无色透明、棒状或卵圆形的囊状结构即子囊(ascus)内。每个子囊中一般形成8个子囊孢子。子囊通常产生在具包被的子囊果内。子囊果一般有四种类型,即球状而无孔口的闭囊壳(cletothecium),瓶状或球状且有真正壳壁和固定孔口的子囊壳(perithecium),由于座溶解而成的、无真正壳壁和固定孔口的子囊腔(locule),以及盘状或杯状的子囊盘(9pothecium)。
⑷担孢子(basidiospore):担子菌的有性孢子。通常是直接由“+”、“-”菌丝结合形成双核菌丝,以后双核菌丝的顶端细胞膨大成棒状的担子(basidium)。在担子内的双核经过核配和减数分裂,最后在担子上产生4个外生的单倍体的担孢子。
此外,有些低等真菌如根肿菌和壶菌产生的有性孢子是一种由游动配子结合成合子,再由合子发育而成的厚壁的休眠孢子(restingspore)。
Ⅷ 真菌细胞质内的遗传物质的载体是
线粒体,在真菌细胞质中,只有线粒体含有少量DNA
Ⅸ 真菌的作用是什么
真菌病具有较高的发病率和死亡率,同时,由于抗真菌药物选择性压力,致使近年来耐药真菌数量及种类迅速增长。因此对真菌耐药性的研究并控制其耐药性发生具有重要的意义,本文简要综述了临床常用的抗真菌药物的作用原理及耐药机制,为预防和治疗真菌病提供帮助。
真菌的耐药性即抗真菌药物对真菌感染治疗失败。临床上患者通常通过 3 种途径感染耐药真菌:
(1) 患者体内定植或感染的真菌发生基因突变,从而产生耐药.
(2) 由于药物的选择压力作用,使患者体内原有或感染的天然耐药的非优势菌成为优势菌。
(3) 患者一开始就被耐药的真菌感染。判断真菌耐药需首先排除其他可能造成抗感染失败的因素,如患者的免疫状态,药物之间的相互作用,抗真菌剂的剂量等。
1 、作用于真菌细胞膜的抗真菌药物及其耐药机制
麦角甾醇是构成真菌细胞膜的重要成分,具有维持细胞膜的流动性、生物调节以及立体结构的作用,而构成真菌细胞膜的甾醇为 C-4 位去甲基化的麦角甾醇。
1.1 两性霉素 B 及其酯类制剂包括:
两性霉素 B(AmB) 、两性霉素 B 含脂复合体 (Abelcet , ABLC) ,两性霉素硫酸胆甾醇酯 (Amphotec , ABCD) 和两性霉素 B 脂质体 (AmBisome , L-AmB)
此类药物通过与真菌细胞膜磷脂双分子层上的甾醇发生交互作用,导致细胞膜产生水溶性的孔道,使细胞膜的通透性发生改变,最终导致重要的细胞内容物流失而造成菌体死亡。两性霉素 B 也可通过刺激巨噬细胞调整自体免疫功能产生杀菌作用 。尽管两性霉素 B 和制霉菌素等多烯类抗真菌药物已经在临床上使用 30 多年,但获得性耐药菌的出现频率仍较低 。
Kelly 等 通过对一名 AIDS 患者分离到的对 AmB 耐药的新型隐球菌的研究发现,真菌对这类药物产生耐药性的主要机制是通过编码 5 , 6- 甾醇去饱和酶的基因发生突变,使其细胞膜中的麦角甾醇结构发生了改变,导致细胞膜的流动性改变,降低了药物对细胞膜的亲和力。同时有研究表明当细胞膜中麦角甾醇成份缺失达到 74 % -85 %时会引发白念珠菌对多种多烯类药物耐药 。 Molzahn 等 通过对 AmB 耐药的酿酒酵母的突变株的研究证实四种不相连的基因 (poll , pol2,pol3 , pol5) 的突变与耐药的产生呈正相关。
1.2 吡咯类抗真菌药包括咪唑类和三唑类 。
咪唑类包括酮康唑、克霉唑、米康唑和益慷唑等。目前多为浅表真菌感染或皮肤黏膜念珠菌感染的局部用药。三唑类包括氟康唑、伊曲康唑、伏立康唑和处于研究阶段的沙康唑 (Saperconazole) , SCH39304(SM8668) , SDZ89-485 ,均可用于治疗深部真菌感染。
吡咯类药物作用的主要靶酶 是 14- α - 去甲基酶 (14-DM) ,利用咪唑环和三唑环上的第三位或第四位氮原子镶嵌在该酶的细胞色素 P450 蛋白的铁原子上,抑制 14-DM 的催化活性,使羊毛甾醇不能转化成 14- 去甲基羊毛甾醇,进而阻止麦角甾醇合成,使真菌的细胞膜合成受阻,导致真菌细胞破裂死亡。编码这段蛋白的基因读码区为 ERG11 。
真菌对唑类药物的耐药,特别是对氟康唑的耐药最常出现于 HIV 患者口腔黏膜门念珠菌感染长时间使用氟康唑的治疗后,近年来由于氟康唑的选择性压力。其它种类的念珠菌如光滑念珠阑和克柔念珠菌及新型隐球菌也出现耐药菌株。吡咯类药物耐药作用机制:
(1)erg11 基因通过点突变,基因过度表达。基因扩增,基因转换或有丝分裂重组等,导致 14- α - 去甲基酶过量表达,或低水平表达甚至不表达;或通过 14- α - 去甲基酶的结构改变,使其与吡咯类抗真菌药的亲和下降,使药物的敏感性下降;或由于 ergll 基因突变可导致其 mRNA 过度表达,使 P45014DM 唑类抗真菌药作用的靶酶增多。
(2) 由于甾醇去饱和酶的失活使真菌细胞膜对抗真菌剂的通透性下降,使药物不能进入真菌内。
(3) 真菌对药物的外排的作用增强,使唑类药物在细胞内的浓度达不到有效作用浓度。酵母菌主要存在两种类型的外排泵,包括 ATP 结合转运蛋白家族 (ATP-binding cassette , ABC) 和易化扩散载体超家族 (major facilitators , MFs), Prasad R 等 [18] 研究表明白念珠菌对唑类药物的耐药主要同 ABC 系统中 CDR 基因过度表达有关。 White TC 研究得出 MDRI 、 CDRl 、 ERG11 是按一定的次序出现的: NDRl 编码的 mRNA 出现于耐药的早期; CDR1 基因编码的 mRNA 升高中现于耐药的后期; EGR11 编码的 mRNA 出现于耐药的中后期, ERG11 和 CDRlmRNA 转录水平的升高与伊曲康唑等的耐药正相关。
2 、作用于核酸合成的抗真菌药物及其耐药机制
5- 氟胞嘧啶 (5-FC) 是目前临床比较常用的作用于核酸合成的抗真菌药物。通过胞嘧啶脱氨酶转化成为 5- 氟尿嘧啶 (5-FU) 。随之,通过鸟苷酸 (UMP) -焦磷酸酶转化为 5- 氟鸟苷酸 (FUMP) ,其进一步被磷酸化后掺入到 RNA 中,最终破坏蛋白质的合成。 5-FU 也能够被转化为 5- 氟脱氧鸟嘧啶单磷酸,其能够抑制参与 DNA 合成和细胞核分裂的胸苷酸合成酶。 5-FU 的抗菌作用机制涉及到干扰嘧啶的代谢、 RNA 和 DNA 的合成以及蛋白质的合成等。临床上很少单独使用 5-FC ,多和氟康唑和两性霉素 B 等合并使用。易发生对 5-FC 耐药株曲霉菌属最常见,其次为新型隐球菌和念珠菌