遺傳演算法解決tsp問題n個城市開源
⑴ 遺傳演算法解決TSP問題
遺傳演算法在很多領域都得到應用;從神經網路研究的角度上考慮,最關心的是遺傳演算法在神經網路的應用。在遺傳演算法應用中,應先明確其特點和關鍵問題,才能對這種演算法深入了解,靈活應用,以及進一步研究開發。
一、遺傳演算法的特點
1.遺傳演算法從問題解的中集開始嫂索,而不是從單個解開始。
這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;容易誤入局部最優解。遺傳演算法從串集開始搜索,復蓋面大,利於全局擇優。
2.遺傳演算法求解時使用特定問題的信息極少,容易形成通用演算法程序。
由於遺傳演算法使用適應值這一信息進行搜索,並不需要問題導數等與問題直接相關的信息。遺傳演算法只需適應值和串編碼等通用信息,故幾乎可處理任何問題。
3.遺傳演算法有極強的容錯能力
遺傳演算法的初始串集本身就帶有大量與最優解甚遠的信息;通過選擇、交叉、變異操作能迅速排除與最優解相差極大的串;這是一個強烈的濾波過程;並且是一個並行濾波機制。故而,遺傳演算法有很高的容錯能力。
4.遺傳演算法中的選擇、交叉和變異都是隨機操作,而不是確定的精確規則。
這說明遺傳演算法是採用隨機方法進行最優解搜索,選擇體現了向最優解迫近,交叉體現了最優解的產生,變異體現了全局最優解的復蓋。
5.遺傳演算法具有隱含的並行性
遺傳演算法的基礎理論是圖式定理。它的有關內容如下:
(1)圖式(Schema)概念
一個基因串用符號集{0,1,*}表示,則稱為一個因式;其中*可以是0或1。例如:H=1x x 0 x x是一個圖式。
(2)圖式的階和長度
圖式中0和1的個數稱為圖式的階,並用0(H)表示。圖式中第1位數字和最後位數字間的距離稱為圖式的長度,並用δ(H)表示。對於圖式H=1x x0x x,有0(H)=2,δ(H)=4。
(3)Holland圖式定理
低階,短長度的圖式在群體遺傳過程中將會按指數規律增加。當群體的大小為n時,每代處理的圖式數目為0(n3)。
遺傳演算法這種處理能力稱為隱含並行性(Implicit Parallelism)。它說明遺傳演算法其內在具有並行處理的特質。
二、遺傳演算法的應用關鍵
遺傳演算法在應用中最關鍵的問題有如下3個
1.串的編碼方式
這本質是問題編碼。一般把問題的各種參數用二進制編碼,構成子串;然後把子串拼接構成「染色體」串。串長度及編碼形式對演算法收斂影響極大。
2.適應函數的確定
適應函數(fitness function)也稱對象函數(object function),這是問題求解品質的測量函數;往往也稱為問題的「環境」。一般可以把問題的模型函數作為對象函數;但有時需要另行構造。
3.遺傳演算法自身參數設定
遺傳演算法自身參數有3個,即群體大小n、交叉概率Pc和變異概率Pm。
群體大小n太小時難以求出最優解,太大則增長收斂時間。一般n=30-160。交叉概率Pc太小時難以向前搜索,太大則容易破壞高適應值的結構。一般取Pc=0.25-0.75。變異概率Pm太小時難以產生新的基因結構,太大使遺傳演算法成了單純的隨機搜索。一般取Pm=0.01—0.2。
三、遺傳演算法在神經網路中的應用
遺傳演算法在神經網路中的應用主要反映在3個方面:網路的學習,網路的結構設計,網路的分析。
1.遺傳演算法在網路學習中的應用
在神經網路中,遺傳演算法可用於網路的學習。這時,它在兩個方面起作用
(1)學習規則的優化
用遺傳演算法對神經網路學習規則實現自動優化,從而提高學習速率。
(2)網路權系數的優化
用遺傳演算法的全局優化及隱含並行性的特點提高權系數優化速度。
2.遺傳演算法在網路設計中的應用
用遺傳演算法設計一個優秀的神經網路結構,首先是要解決網路結構的編碼問題;然後才能以選擇、交叉、變異操作得出最優結構。編碼方法主要有下列3種:
(1)直接編碼法
這是把神經網路結構直接用二進制串表示,在遺傳演算法中,「染色體」實質上和神經網路是一種映射關系。通過對「染色體」的優化就實現了對網路的優化。
(2)參數化編碼法
參數化編碼採用的編碼較為抽象,編碼包括網路層數、每層神經元數、各層互連方式等信息。一般對進化後的優化「染色體」進行分析,然後產生網路的結構。
(3)繁衍生長法
這種方法不是在「染色體」中直接編碼神經網路的結構,而是把一些簡單的生長語法規則編碼入「染色體」中;然後,由遺傳演算法對這些生長語法規則不斷進行改變,最後生成適合所解的問題的神經網路。這種方法與自然界生物地生長進化相一致。
3.遺傳演算法在網路分析中的應用
遺傳演算法可用於分析神經網路。神經網路由於有分布存儲等特點,一般難以從其拓撲結構直接理解其功能。遺傳演算法可對神經網路進行功能分析,性質分析,狀態分析。
遺傳演算法雖然可以在多種領域都有實際應用,並且也展示了它潛力和寬廣前景;但是,遺傳演算法還有大量的問題需要研究,目前也還有各種不足。首先,在變數多,取值范圍大或無給定范圍時,收斂速度下降;其次,可找到最優解附近,但無法精確確定最擾解位置;最後,遺傳演算法的參數選擇尚未有定量方法。對遺傳演算法,還需要進一步研究其數學基礎理論;還需要在理論上證明它與其它優化技術的優劣及原因;還需研究硬體化的遺傳演算法;以及遺傳演算法的通用編程和形式等。
⑵ 用遺傳演算法求解10城市旅行商問題,用matlab編程,要可以運行的程序,跪求,必有重謝
%螞蟻演算法
function [Shortest_Route,Shortest_Length]=anttsp(city,iter_max,m,Alpha,Beta,Rho,Q)
n=size(city,1);
d=zeros(n,n);
d=squareform(pdist(city));
Eta=1./d;
Tau=ones(n,n);
Tabu=zeros(m,n);
nC=1;
R_best=zeros(iter_max,n);
L_best=inf.*ones(iter_max,1);
while nC<=iter_max
route=[];
for i=1:ceil(m/n)
route=[route,randperm(n)];
end
Tabu(:,1)=(route(1,1:m))';
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
for k=1:n
if isempty(find(visited==k, 1))
J(Jc)=k;
Jc=Jc+1;
end
end
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
Pcum=cumsum(P);
Select=find(Pcum>=rand);
if isempty(Select)%是不是一定能保證Select不為空
Tabu(i,j)=round(1+(n-1)*rand);
else
next_visit=J(Select(1));
Tabu(i,j)=next_visit;
end
end
end
if nC>=2
Tabu(1,:)=R_best(nC-1,:);
end
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+d(R(j),R(j+1));
end
L(i)=L(i)+d(R(1),R(n));
end
L_best(nC)=min(L);
pos=find(L==L_best(nC));
R_best(nC,:)=Tabu(pos(1),:);
nC=nC+1;
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,n);
end
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
end
%%隨機演算法
%city是n行2列的矩陣,每一行表示一個城市的經緯度,一共n個城市
%time表示循環次數,越大,可能找到的路徑最短,當然裡面有隨機性。
function [Shortest_Route,Shortest_Length]=TSP_SuiJiSuanFa(city,times)
n=size(city,1);
d=squareform(pdist(city));
Shortest_Length=inf;
for i=1:times
tempRoute=randperm(n);
tempLength=0;
for j=1:n-1
tempLength=tempLength+d(tempRoute(j),tempRoute(j+1));
end
tempLength=tempLength+d(tempRoute(n),1);
if tempLength<Shortest_Length
Shortest_Length=tempLength;
Shortest_Route=tempRoute;
end
end
end
⑶ C語言遺傳演算法在求解TSP問題 畢業論文+源代碼
目
錄
摘要
i
abstract
ii
引
言
1
第一章
基本遺傳演算法
2
1.1
遺傳演算法的產生及發展
3
1.2
基本原理
3
1.3
遺傳演算法的特點
3
1.4
基本遺傳演算法描述
5
1.5
遺傳演算法構造流程
6
第二章
遺傳演算法的實現技術
6
2.1
編碼方法
7
2.1.1
二進制編碼
7
2.1.2
格雷碼編碼
7
2.1.3
符點數編碼
8
2.1.4
參數編碼
8
2.2
適應度函數
10
2.3
選擇運算元
10
2.4
交叉運算元
10
2.4.1
單點交叉運算元
10
2.4.2
雙點交叉運算元
11
2.4.3
均勻交叉運算元
11
2.4.4
部分映射交叉
11
2.4.5
順序交叉
12
2.5
變異運算元
12
2.6
運行參數
12
2.7
約束條件的處理方法
13
2.8
遺傳演算法流程圖
14
第三章
遺傳演算法在tsp上的應用
15
3.1
tsp問題的建模與描述
15
3.2
對tsp的遺傳基因編碼方法
16
3.3
針對tsp的遺傳操作運算元
17
3.3.1
選擇運算元
17
3.3.1.1
輪盤賭選擇
17
3.3.1.2
最優保存策略選擇
17
3.3.2
交叉運算元
20
3.3.2.1
單點交叉
20
3.3.2.2
部分映射交叉
21
3.3.3
變異運算元
23
3.4
tsp的混和遺傳演算法
26
第四章
實例分析
27
4.1
測試數據
27
4.2
測試結果
27
4.3
結果分析
27
摘
要
tsp
(traveling
salesman
problem)旅行商問題是一類典型的np完全問題,遺傳演算法是解決np問題的一種較理想的方法。文章首先介紹了基本遺傳演算法的基本原理、特點及其基本實現技術;接著針對tsp
問題,論述了遺傳演算法在編碼表示和遺傳運算元(包括選擇運算元、交叉運算元變異運算元這三種運算元)等方面的應用情況,分別指出幾種常用的編碼方法的優點和缺點,並且結合tsp的運行實例詳細分析了基本遺傳演算法的4個運行參數群體大小、遺傳演算法的終止進化代數、交叉概率、變異概率,對遺傳演算法的求解結果和求解效率的影響,經過多次的測試設定出了它們一組比較合理的取值。最後,簡單說明了混合遺傳演算法在求解tsp問題中的應用並對遺傳演算法解決tsp問題的前景提出了展望。
關鍵詞:tsp
遺傳演算法
遺傳運算元
編碼
@@@需要的話按我的名字找我吧
⑷ matlab用遺傳演算法解決TSP的問題,求幫助
把下面的(1)-(7)依次存成相應的.m文件,在(7)的m文件下運行就可以了
(1) 適應度函數fit.m
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
(2)個體距離計算函數 mylength.m
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
end
(3)交叉操作函數 cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end
end
(4)對調函數 exchange.m
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
end
(5)變異函數 Mutation.m
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);
temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)連點畫圖函數 plot_route.m
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end
end
(7)主函數
clear;
clc;
%%%%%%%%%%%%%%%輸入參數%%%%%%%%
N=50; %%城市的個數
M=100; %%種群的個數
C=100; %%迭代次數
C_old=C;
m=2; %%適應值歸一化淘汰加速指數
Pc=0.4; %%交叉概率
Pmutation=0.2; %%變異概率
%%生成城市的坐標
pos=randn(N,2);
%%生成城市之間距離矩陣
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%如果城市之間的距離矩陣已知,可以在下面賦值給D,否則就隨機生成
%%生成初始群體
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%隨機選擇一個種群
R=popm(1,:);
figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%畫出種群各城市之間的連線
axis([-3 3 -3 3]);
%%初始化種群及其適應函數
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);
distance_min=zeros(C+1,1); %%各次迭代的最小的種群的距離
while C>=0
fprintf('迭代第%d次\n',C);
%%選擇操作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand*0.3;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次選擇都保存最優的種群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];
%%交叉操作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nn*Pc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%變異操作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求適應度函數
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);
⑸ 遺傳演算法和蟻群演算法在求解TSP問題上的對比分析
【原創】比遺傳演算法性能更好:蟻群演算法TSP(旅行商問題)通用matlab程序
聲明:本程序為本人原創,在研學論壇首次發表,本人保留一切權利,僅供學習交流用,如轉載請註明原作者!
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:[email protected]
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符號說明
%% C n個城市的坐標,n×2的矩陣
%% NC_max 最大迭代次數
%% m 螞蟻個數
%% Alpha 表徵信息素重要程度的參數
%% Beta 表徵啟發式因子重要程度的參數
%% Rho 信息素蒸發系數
%% Q 信息素增加強度系數
%% R_best 各代最佳路線
%% L_best 各代最佳路線的長度
%%=========================================================================
%%第一步:變數初始化
n=size(C,1);%n表示問題的規模(城市個數)
D=zeros(n,n);%D表示完全圖的賦權鄰接矩陣
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta為啟發因子,這里設為距離的倒數
Tau=ones(n,n);%Tau為信息素矩陣
Tabu=zeros(m,n);%存儲並記錄路徑的生成
NC=1;%迭代計數器
R_best=zeros(NC_max,n);%各代最佳路線
L_best=inf.*ones(NC_max,1);%各代最佳路線的長度
L_ave=zeros(NC_max,1);%各代路線的平均長度
while NC<=NC_max%停止條件之一:達到最大迭代次數
%%第二步:將m只螞蟻放到n個城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%%第三步:m只螞蟻按概率函數選擇下一座城市,完成各自的周遊
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));%已訪問的城市
J=zeros(1,(n-j+1));%待訪問的城市
P=J;%待訪問城市的選擇概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面計算待選城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原則選取下一個城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:記錄本次迭代最佳路線
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1
%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
%%第六步:禁忌表清零
Tabu=zeros(m,n);
end
%%第七步:輸出結果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave)
function DrawRoute(C,R)
%%=========================================================================
%% DrawRoute.m
%% 畫路線圖的子函數
%%-------------------------------------------------------------------------
%% C Coordinate 節點坐標,由一個N×2的矩陣存儲
%% R Route 路線
%%=========================================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
hold on
end
設置初始參數如下:
m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;
31城市坐標為:
1304 2312
3639 1315
4177 2244
3712 1399
3488 1535
3326 1556
3238 1229
4196 1004
4312 790
4386 570
3007 1970
2562 1756
2788 1491
2381 1676
1332 695
3715 1678
3918 2179
4061 2370
3780 2212
3676 2578
4029 2838
4263 2931
3429 1908
3507 2367
3394 2643
3439 3201
2935 3240
3140 3550
2545 2357
2778 2826
2370 2975
運行後得到15602的巡遊路徑,
⑹ 你好 我想基於matlab,用遺傳演算法做一個 9個城市的 TSP 問題! 一頭霧水目前。要求繪出 最優路線圖!
你這個問題有好多人研究,網上都可以找到現成的代碼。參考資料中我給你提供了一個。
⑺ 利用遺傳演算法求解TSP問題 從北京出發 四個城市
太復雜了
還是找專業的吧
⑻ 遺傳演算法求解tsp問題的適應度值問題求城市間最短距離
把距離矩陣中每個值都縮小一定倍數
⑼ 遺傳演算法tsp 城市100個 種群個數應該是多少
C語言實現遺傳演算法解決TSP問題,帶完整代碼,應用最基礎的遺傳演算法思想。帶實驗報告,並在實驗報告中與模擬退火演算法進行對比。
//以下是cpp文件完整代碼:
#include
#include
#include
#include
#include
#include
using namespace std;
const int N = 30;//城市個數
const int MAXN = 50;//最大城市個數
const int population = 100;//種群個體數
const int MAXpopulation = 100;//最大種群個數 const double mutation_rate = 0.4;//變異率
const double crossover_rate = 0.65;//交配率
const int iter = 200;//迭代次數
//城市結構體
struct city
{
//char id;
int x, y;
};
//路徑結構體
struct path
{
city cities[MAXN];
double length;
};
double D[MAXN][MAXN];//存儲城市之間的長度 city bcity[MAXN];//存儲最優路徑的各個城市 path bpath[MAXpopulation];//存儲種群所有個體
double fitness[MAXpopulation];//存儲種群個體的適應度
//產生x-y的隨機整數
int randInt(int x, int y)
{
return rand()%(y-x+1)+x;
}
double randDouble()
{