當前位置:首頁 » 遺傳因素 » 十進制編碼遺傳演算法

十進制編碼遺傳演算法

發布時間: 2021-03-29 03:36:22

遺傳演算法的基本原理

遺傳演算法通常的實現方式,就是用程序來模擬生物種群進化的過程。對於一個求專最優解的問題,我屬們可以把一定數量的候選解(稱為個體)抽象地表示為染色體,使種群向更好的解來進化。大家知道,使用演算法解決問題的時候,解通常都是用數據或者字元串等表示的,而這個數據或字元串對應到生物中就是某個個體的「染色體」。進化從完全隨機個體的種群開始,之後一代一代發生。在每一代中評價其在整個種群的適應度,從當前種群中隨機地選擇多個個體(基於它們的適應度),通過自然選擇和突變產生新的種群,該種群在演算法的下一次迭代中成為當前種群。其具體的計算步驟如下:

  • 編碼:將問題空間轉換為遺傳空間;

  • 生成初始種群:隨機生成P個染色體;

  • 種群適應度計算:按照確定的適應度函數,計算各個染色體的適應度;

  • 選擇:根據染色體適應度,按照選擇運算元進行染色體的選擇;

  • 交叉:按照交叉概率對被選擇的染色體進行交叉操作,形成下一代種群;

  • 突變:按照突變概率對下一代種群中的個體進行突變操作;

  • 返回第3步繼續迭代,直到滿足終止條件。

㈡ 遺傳演算法十進制編碼轉化為路徑為什麼是排序

#include"stdafx.h"#include"stdio.h"//標准輸入輸出庫#include"stdlib.h"//標准函數庫#include"time.h"#include"iostream.h"#include"iomanip.h"#include"math.h"//數學函數庫#defineMAX1//設定求最大適應值#defineMIN2#defineCHROMLENGTH15//染色體長度,注意編碼變化時,要隨時修改#defineMAXNUM1000#defineCmax30//估計最大值#defineCmin0//估計最小值intPopSize=150;//每代最大個體數intFunctionMode=MIN;doublem_fPc=0.9;//交叉概率doublem_fPm=0.009;//變異概率intMaxGeneration=20;//最大世代數intd[150][15];//找到染色體並拷貝到這個數組中ints[150][15];intgeneration;//世代數intBest_Index;//最好個體下標intWorst_Index;//最壞個體下標structindivial//定義個體數據結構{doublechrom[CHROMLENGTH+1];//染色體doublevalue;//函數值doublefitness;//適應度};structindivialBestIndivial;//當代最佳個體structindivialWorstIndivial;structindivialGroup[150];//種群doubleRandom(doubleLow,doubleHigh)//本函數實現隨機產生Low-High之間的實數.意思:隨機{return((double)rand()/RAND_MAX)*(High-Low)+Low;}doubleMax(doublea,doubleb){if(a>=b)returna;elsereturnb;}voidGenerateInitialPopulation()//種群初始化,二進制編碼初始化其中'1'表示路徑頂點在最短路徑中,'0'則反之{inti,j;for(i=0;i

㈢ 遺傳演算法編碼長度多少合適

可以使用二進制編碼的,只需要轉換一下即可

㈣ matlab遺傳演算法代碼

我發一些他們的源程序你,都是我在文獻中搜索總結出來的:
% 下面舉例說明遺傳演算法 %
% 求下列函數的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 將 x 的值用一個10位的二值形式表示為二值問題,一個10位的二值數提供的解析度是每為 (10-0)/(2^10-1)≈0.01 。 %
% 將變數域 [0,10] 離散化為二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一個二值數。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%

% 編程
%-----------------------------------------------
% 2.1初始化(編碼)
% initpop.m函數的功能是實現群體的初始化,popsize表示群體的大小,chromlength表示染色體的長度(二值數的長度),
% 長度大小取決於變數的二進制編碼的長度(在本例中取10位)。
%遺傳演算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand隨機產生每個單元為 {0,1} 行數為popsize,列數為chromlength的矩陣,
% roud對矩陣的每個單元進行圓整。這樣產生的初始種群。

% 2.2.2 將二進制編碼轉化為十進制數(2)
% decodechrom.m函數的功能是將染色體(或二進制編碼)轉換為十進制,參數spoint表示待解碼的二進制串的起始位置
% (對於多個變數而言,如有兩個變數,採用20為表示,每個變數10為,則第一個變數從1開始,另一個變數從11開始。本例為1),
% 參數1ength表示所截取的長度(本例為10)。
%遺傳演算法子程序
%Name: decodechrom.m
%將二進制編碼轉換成十進制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.4 選擇復制
% 選擇或復制操作是決定哪些個體可以進入下一代。程序中採用賭輪盤選擇法選擇,這種方法較易實現。
% 根據方程 pi=fi/∑fi=fi/fsum ,選擇步驟:
% 1) 在第 t 代,由(1)式計算 fsum 和 pi
% 2) 產生 {0,1} 的隨機數 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,則第 k 個個體被選中
% 4) 進行 N 次2)、3)操作,得到 N 個個體,成為第 t=t+1 代種群
%遺傳演算法子程序
%Name: selection.m
%選擇復制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求適應值之和
fitvalue=fitvalue/totalfit; %單個個體被選擇的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],則 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %從小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),群體中的每個個體之間都以一定的概率 pc 交叉,即兩個個體從各自字元串的某一位置
% (一般是隨機確定)開始互相交換,這類似生物進化過程中的基因分裂與重組。例如,假設2個父代個體x1,x2為:
% x1=0100110
% x2=1010001
% 從每個個體的第3位開始交叉,交又後得到2個新的子代個體y1,y2分別為:
% y1=0100001
% y2=1010110
% 這樣2個子代個體就分別具有了2個父代個體的某些特徵。利用交又我們有可能由父代個體在子代組合成具有更高適合度的個體。
% 事實上交又是遺傳演算法區別於其它傳統優化方法的主要特點之一。
%遺傳演算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 變異
% 變異(mutation),基因的突變普遍存在於生物的進化過程中。變異是指父代中的每個個體的每一位都以概率 pm 翻轉,即由「1」變為「0」,
% 或由「0」變為「1」。遺傳演算法的變異特性可以使求解過程隨機地搜索到解可能存在的整個空間,因此可以在一定程度上求得全局最優解。
%遺傳演算法子程序
%Name: mutation.m
%變異
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

很多哈,也很麻煩,但是設計程序就是如此!得耐心點才行。 最近又作了些總結,要有興趣網路HI我吧。我有M文件,運行成功

㈤ c++遺傳演算法的編碼解解碼問題

#include<iostream>
using namespace std;
float transVaul(char *buf);
int main()
{
char buf[21] = "";
float arr[20] = { 0 };
cout<<"輸入20位基因編碼:\n";
//比如11110000111100001111
//輸入很粗糙,只是為了演示程序執行
for (int i = 0; i < 20; i++)
{
cout << i + 1 << ":\t";
memset(buf,0,21);
cin >> buf;
arr[i] = transVaul(buf);
}
cout << "對應的十進制是:\n";
for (int j = 0; j < 20; j++)
printf("%f\n",arr[j]);
return 0;
}

float transVaul(char *buf)
{
float score = 0;
unsigned *pt = (unsigned *)(&score);
for (int i = 0; i < 20; i++)
{
*pt|=(buf[i] - 48);
*pt <<= 1;
}
*pt=*pt <<2|0x3f800000;
return score-1;
}

㈥ 遺傳演算法的編碼方法有幾種

常用的編碼介紹
1、二進制編碼:
(1)定義:二進制編碼方法是使用二值符號集{0,1},它所構成的個體基因型是一個二進制編碼符號串。二進制編碼符號串的長度與問題所要求的求解精度有關。
(2)舉例:0≤x≤1023,精度為1,m表示二進制編碼的長度。則有建議性說法:使
2m-1≤1000(跟精度有關)≤2m-1。取m=10
則X:0010101111就可以表示一個個體,它所對應的問題空間的值是x=175。
(3)優缺點
優點:符合最小字元集原則,便於用模式定理分析;
缺點:連續函數離散化時的映射誤差。
2、格雷碼編碼
(1)定義:格雷碼編碼是其連續的兩個整數所對應的編碼之間只有一個碼位是不同的,其餘碼位完全相同。它是二進制編碼方法的一種變形。
十進制數0—15之間的二進制碼和相應的格雷碼分別編碼如下。
二進制編碼為:0000,0001,0010,001
1,0100。0101,0110,0111,
1000,1001,1010,1011,1100,1101,1110,1111;
格雷碼編碼為:0000,0001,0011,0010,0110,0111,0101,0100,
1100,1101,1111,1110,1010,1011,1001,1000。
(2)舉例:對於區間[0。1023]中兩個鄰近的整數X1=175和X2=176,若用長度為10位的二進制編碼,可表示為X11:0010101111和X12
0010110000,而使用同樣長度的格雷碼,它們可分別表示為X21:0010101111和X22:0010101000。
(3)優點:增強了遺傳演算法的局部搜索能力,便於連續函數的局部控制項搜索。
3、浮點數(實數)編碼
(1)定義:浮點數編碼是指個體的每個基因值用某一范圍內的一個浮點數來表示,而個體的編碼長度等於其決策變數的個數。因為這種編碼方法使用的決策變數的真實值,也稱之為真值編碼方法。
(2)舉例:
(3)優點:實數編碼是遺傳演算法中在解決連續參數優化問題時普遍使用的一種編碼方式,具有較高的精度,在表示連續漸變問題方面具有優勢。
4、排列編碼
排列編碼也叫序列編碼,是針對一些特殊問題的特定編碼方式。排序編碼使問題簡潔,易於理解。該編碼方式將有限集合內的元素進行排列。若集合內包含m個元素,則存在m!種排列方法,當m不大時,m!也不會太大,窮舉法就可以解決問題。當m比較大時,m!就會變得非常大,窮舉法失效,遺傳演算法在解決這類問題上具有優勢。如解決TSP問題時,用排列編碼自然、合理。
5、其它編碼方式
多參數級聯編碼等

㈦ 遺傳演算法二進制編碼問題:二進制編碼的位數是如何確定的

用這個公式試試,這個是解碼用的,至於你說的位數,可以給你舉個例子,版比如[0,1],精度千分之權1,就是相當於裡面離散化出來1000+1個點,2的10次方是1024,2的9次方是512,這時候你就只要取10位就可以把這1001個點的變化全部包含到二進制裡面了

㈧ MATLAB編遺傳演算法源程序

遺傳演算法實例:

也是自己找來的,原代碼有少許錯誤,本人都已更正了,調試運行都通過了的。
對於初學者,尤其是還沒有編程經驗的非常有用的一個文件
遺傳演算法實例

% 下面舉例說明遺傳演算法 %
% 求下列函數的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 將 x 的值用一個10位的二值形式表示為二值問題,一個10位的二值數提供的解析度是每為 (10-0)/(2^10-1)≈0.01 。 %
% 將變數域 [0,10] 離散化為二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一個二值數。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%

% 編程
%-----------------------------------------------
% 2.1初始化(編碼)
% initpop.m函數的功能是實現群體的初始化,popsize表示群體的大小,chromlength表示染色體的長度(二值數的長度),
% 長度大小取決於變數的二進制編碼的長度(在本例中取10位)。
%遺傳演算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand隨機產生每個單元為 {0,1} 行數為popsize,列數為chromlength的矩陣,
% roud對矩陣的每個單元進行圓整。這樣產生的初始種群。

% 2.2 計算目標函數值
% 2.2.1 將二進制數轉化為十進制數(1)
%遺傳演算法子程序
%Name: decodebinary.m
%產生 [2^n 2^(n-1) ... 1] 的行向量,然後求和,將二進制轉化為十進制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列數
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 將二進制編碼轉化為十進制數(2)
% decodechrom.m函數的功能是將染色體(或二進制編碼)轉換為十進制,參數spoint表示待解碼的二進制串的起始位置
% (對於多個變數而言,如有兩個變數,採用20為表示,每個變數10為,則第一個變數從1開始,另一個變數從11開始。本例為1),
% 參數1ength表示所截取的長度(本例為10)。
%遺傳演算法子程序
%Name: decodechrom.m
%將二進制編碼轉換成十進制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.2.3 計算目標函數值
% calobjvalue.m函數的功能是實現目標函數的計算,其公式採用本文示例模擬,可根據不同優化問題予以修改。
%遺傳演算法子程序
%Name: calobjvalue.m
%實現目標函數的計算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %將pop每行轉化成十進制數
x=temp1*10/1023; %將二值域 中的數轉化為變數域 的數
objvalue=10*sin(5*x)+7*cos(4*x); %計算目標函數值

% 2.3 計算個體的適應值
%遺傳演算法子程序
%Name:calfitvalue.m
%計算個體的適應值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';

% 2.4 選擇復制
% 選擇或復制操作是決定哪些個體可以進入下一代。程序中採用賭輪盤選擇法選擇,這種方法較易實現。
% 根據方程 pi=fi/∑fi=fi/fsum ,選擇步驟:
% 1) 在第 t 代,由(1)式計算 fsum 和 pi
% 2) 產生 {0,1} 的隨機數 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,則第 k 個個體被選中
% 4) 進行 N 次2)、3)操作,得到 N 個個體,成為第 t=t+1 代種群
%遺傳演算法子程序
%Name: selection.m
%選擇復制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求適應值之和
fitvalue=fitvalue/totalfit; %單個個體被選擇的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],則 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %從小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),群體中的每個個體之間都以一定的概率 pc 交叉,即兩個個體從各自字元串的某一位置
% (一般是隨機確定)開始互相交換,這類似生物進化過程中的基因分裂與重組。例如,假設2個父代個體x1,x2為:
% x1=0100110
% x2=1010001
% 從每個個體的第3位開始交叉,交又後得到2個新的子代個體y1,y2分別為:
% y1=0100001
% y2=1010110
% 這樣2個子代個體就分別具有了2個父代個體的某些特徵。利用交又我們有可能由父代個體在子代組合成具有更高適合度的個體。
% 事實上交又是遺傳演算法區別於其它傳統優化方法的主要特點之一。
%遺傳演算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 變異
% 變異(mutation),基因的突變普遍存在於生物的進化過程中。變異是指父代中的每個個體的每一位都以概率 pm 翻轉,即由「1」變為「0」,
% 或由「0」變為「1」。遺傳演算法的變異特性可以使求解過程隨機地搜索到解可能存在的整個空間,因此可以在一定程度上求得全局最優解。
%遺傳演算法子程序
%Name: mutation.m
%變異
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

% 2.7 求出群體中最大得適應值及其個體
%遺傳演算法子程序
%Name: best.m
%求出群體中適應值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end

% 2.8 主程序
%遺傳演算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群體大小
chromlength=10; %字元串長度(個體長度)
pc=0.6; %交叉概率
pm=0.001; %變異概率

pop=initpop(popsize,chromlength); %隨機產生初始群體
for i=1:20 %20為迭代次數
[objvalue]=calobjvalue(pop); %計算目標函數
fitvalue=calfitvalue(objvalue); %計算群體中每個個體的適應度
[newpop]=selection(pop,fitvalue); %復制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %變異
[bestindivial,bestfit]=best(pop,fitvalue); %求出群體中適應值最大的個體及其適應值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off

[z index]=max(y); %計算最大值及其位置
x5=x(index)%計算最大值對應的x值
y=z

【問題】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。

【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。

㈨ 遺傳演算法

遺傳演算法實例:

也是自己找來的,原代碼有少許錯誤,本人都已更正了,調試運行都通過了的。
對於初學者,尤其是還沒有編程經驗的非常有用的一個文件
遺傳演算法實例

% 下面舉例說明遺傳演算法 %
% 求下列函數的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 將 x 的值用一個10位的二值形式表示為二值問題,一個10位的二值數提供的解析度是每為 (10-0)/(2^10-1)≈0.01 。 %
% 將變數域 [0,10] 離散化為二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一個二值數。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%

% 編程
%-----------------------------------------------
% 2.1初始化(編碼)
% initpop.m函數的功能是實現群體的初始化,popsize表示群體的大小,chromlength表示染色體的長度(二值數的長度),
% 長度大小取決於變數的二進制編碼的長度(在本例中取10位)。
%遺傳演算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand隨機產生每個單元為 {0,1} 行數為popsize,列數為chromlength的矩陣,
% roud對矩陣的每個單元進行圓整。這樣產生的初始種群。

% 2.2 計算目標函數值
% 2.2.1 將二進制數轉化為十進制數(1)
%遺傳演算法子程序
%Name: decodebinary.m
%產生 [2^n 2^(n-1) ... 1] 的行向量,然後求和,將二進制轉化為十進制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列數
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 將二進制編碼轉化為十進制數(2)
% decodechrom.m函數的功能是將染色體(或二進制編碼)轉換為十進制,參數spoint表示待解碼的二進制串的起始位置
% (對於多個變數而言,如有兩個變數,採用20為表示,每個變數10為,則第一個變數從1開始,另一個變數從11開始。本例為1),
% 參數1ength表示所截取的長度(本例為10)。
%遺傳演算法子程序
%Name: decodechrom.m
%將二進制編碼轉換成十進制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.2.3 計算目標函數值
% calobjvalue.m函數的功能是實現目標函數的計算,其公式採用本文示例模擬,可根據不同優化問題予以修改。
%遺傳演算法子程序
%Name: calobjvalue.m
%實現目標函數的計算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %將pop每行轉化成十進制數
x=temp1*10/1023; %將二值域 中的數轉化為變數域 的數
objvalue=10*sin(5*x)+7*cos(4*x); %計算目標函數值

% 2.3 計算個體的適應值
%遺傳演算法子程序
%Name:calfitvalue.m
%計算個體的適應值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';

% 2.4 選擇復制
% 選擇或復制操作是決定哪些個體可以進入下一代。程序中採用賭輪盤選擇法選擇,這種方法較易實現。
% 根據方程 pi=fi/∑fi=fi/fsum ,選擇步驟:
% 1) 在第 t 代,由(1)式計算 fsum 和 pi
% 2) 產生 {0,1} 的隨機數 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,則第 k 個個體被選中
% 4) 進行 N 次2)、3)操作,得到 N 個個體,成為第 t=t+1 代種群
%遺傳演算法子程序
%Name: selection.m
%選擇復制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求適應值之和
fitvalue=fitvalue/totalfit; %單個個體被選擇的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],則 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %從小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),群體中的每個個體之間都以一定的概率 pc 交叉,即兩個個體從各自字元串的某一位置
% (一般是隨機確定)開始互相交換,這類似生物進化過程中的基因分裂與重組。例如,假設2個父代個體x1,x2為:
% x1=0100110
% x2=1010001
% 從每個個體的第3位開始交叉,交又後得到2個新的子代個體y1,y2分別為:
% y1=0100001
% y2=1010110
% 這樣2個子代個體就分別具有了2個父代個體的某些特徵。利用交又我們有可能由父代個體在子代組合成具有更高適合度的個體。
% 事實上交又是遺傳演算法區別於其它傳統優化方法的主要特點之一。
%遺傳演算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 變異
% 變異(mutation),基因的突變普遍存在於生物的進化過程中。變異是指父代中的每個個體的每一位都以概率 pm 翻轉,即由「1」變為「0」,
% 或由「0」變為「1」。遺傳演算法的變異特性可以使求解過程隨機地搜索到解可能存在的整個空間,因此可以在一定程度上求得全局最優解。
%遺傳演算法子程序
%Name: mutation.m
%變異
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

% 2.7 求出群體中最大得適應值及其個體
%遺傳演算法子程序
%Name: best.m
%求出群體中適應值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end

% 2.8 主程序
%遺傳演算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群體大小
chromlength=10; %字元串長度(個體長度)
pc=0.6; %交叉概率
pm=0.001; %變異概率

pop=initpop(popsize,chromlength); %隨機產生初始群體
for i=1:20 %20為迭代次數
[objvalue]=calobjvalue(pop); %計算目標函數
fitvalue=calfitvalue(objvalue); %計算群體中每個個體的適應度
[newpop]=selection(pop,fitvalue); %復制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %變異
[bestindivial,bestfit]=best(pop,fitvalue); %求出群體中適應值最大的個體及其適應值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off

[z index]=max(y); %計算最大值及其位置
x5=x(index)%計算最大值對應的x值
y=z

【問題】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。

【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。
打字不易,如滿意,望採納。

熱點內容
法國電影小男孩在農場遇到一隻白狗 發布:2024-08-19 08:36:47 瀏覽:594
微光上有什麼恐怖片 發布:2024-08-19 05:25:40 瀏覽:915
穿越香港鬼片滅鬼的小說 發布:2024-08-19 03:36:10 瀏覽:833
惡之花都敏秀姐姐扮演者 發布:2024-08-19 02:22:07 瀏覽:321
thai好看電影 發布:2024-08-18 11:34:37 瀏覽:795
電影內容女的是傻子容易尿褲子,男的很窮單身漢 發布:2024-08-18 10:31:36 瀏覽:129
雙機巨幕廳和4k廳哪個好 發布:2024-08-18 10:18:41 瀏覽:818
日本僵屍片上世紀 發布:2024-08-18 07:32:00 瀏覽:537
怪物 韓國電影在線 發布:2024-08-18 03:49:17 瀏覽:491
第九區一樣的 發布:2024-08-17 23:16:05 瀏覽:528