遺傳密碼的進化
① 遺傳密碼的一代密碼
遺傳密碼是由核苷酸組成的三聯體。翻譯時從起始密碼子開始,沿著mRNA的5′——3′方向,不重疊地連續閱讀氨基酸密碼子,一直進行到終止密碼子才停止,結果從N端到C端生成一條具有特定順序的肽鏈。
「遺傳密碼」一詞,現在被用來代表兩種完全不同的含義,外行常用它來表示生物體內的全部遺傳信息。分子生物學家指的是表示四個字母的核酸語言和20個字母的蛋白質語言之間關系的小字典。要了解核苷酸順序是如何決定氨基酸順序的,首先要知道編碼的比例關系,即要弄清楚核苷酸數目與氨基酸數目的對應比例關系。
從數學觀點考慮,核酸通常有四種核苷酸,而組成蛋白質的氨基酸有20種,因此,一種核苷酸作為一種氨基酸的密碼是不可能的。如果兩種核苷酸為一組,代表一種氨基酸,那麼它們所能代表的氨基酸也只能有42=16種(不足20種)。如果三個核苷酸對應一個氨基酸,那麼可能的密碼子有43=64種,這是能夠將20種氨基酸全部包括進去的最低比例。因此密碼子是三聯體(triplet),而不是二聯體,(plet),更不是單一體(singlet)。
國際公認的遺傳密碼,它是在1954年首先由蓋莫夫提出具體設想,即四種不同的鹼基怎樣排列組合進行編碼,才能表達出20種不同的氨基酸。1961年,由尼倫伯格等用大腸桿菌無細胞體系實驗,發現苯丙氨酸的密碼就是RNA上的尿嘧啶UUU密碼子,到1966年,64種遺傳密碼全部破譯。
在64個密碼子中,一共有三個終止密碼子,它們是UAA、UAG和UGA,不與tRNA結合,但能被釋放因子識別。終止密碼子也叫標點密碼子或叫無意義密碼子。有兩個氨基酸密碼子AUG和GUG同時兼作起密碼子,它們作為體內蛋白質生物合成的起始信號,其中AUG使用最普遍。
密碼的最終破譯是由實驗室而不是由理論得出的,遺傳密碼體現了分子生物學的核心,猶如元素周期表是化學的核心一樣,但二者又有很大的差別。元素周期表很可能在宇宙中的任何地方都是正確的,特別是在溫度和壓力與地球都相似的條件下。但是如果在其他星球也有生命的存在,而那種生命也利用核酸和蛋白質,它們的密碼很可能有巨的差異。在地球上,遺傳密碼只在某些生物中有微小的變異。克里克認為,遺傳密碼如同生命本身一樣,並不是事物永恆的性質,至少在一定程度上,它是偶然的產物。當密碼最初開始進化的,它很可能對生命的起源起重要作用。
② 地球上所有的生物都共用一套遺傳密碼!那麼豈不是所有的生物都共有一個祖先
你好!
是厭氧的單細胞生物,生物界共用一套遺傳密碼,從進化的角度去理解:所有生專物所含的元屬素種類基本相同,進化理論認為,生物不是神創造的。而且最初的生命起源於原始海洋,比如說,是由更古老!
並且這個理論是有依據的,都來自共同的祖先進化而來,更簡單的生物進化出來的,地球上的所有生物,也就是說,還有大多數生物都是由細胞組成的,等等是的
僅代表個人觀點,不喜勿噴,謝謝。
③ 密碼子和遺傳密碼的區別
遺傳密碼是由64個密碼子組成的,所以在本質上密碼子和遺傳密碼沒有區別。
1、遺傳密碼子是三聯體密碼:一個密碼子由信使核糖核酸(mRNA)上相鄰的三個鹼基組成。密碼子具有通用性,不同的生物密碼子基本相同,即共用一套密碼子。
2、、 遺傳密碼子無逗號:兩個密碼子間沒有標點符號,密碼子與密碼子之間沒有任何不編碼的核苷酸,讀碼必須按照一定的讀碼框架,從正確的起點開始,一個不漏地一直讀到終止信號。遺傳密碼子不重疊,在多核苷酸鏈上任何兩個相鄰的密碼子不共用任何核苷酸。
3、 密碼子具有簡並性:除了甲硫氨酸和色氨酸外,每一個氨基酸都至少有兩個密碼子。這樣可以在一定程度內,使氨基酸序列不會因為某一個鹼基被意外替換而導致氨基酸錯誤。
(3)遺傳密碼的進化擴展閱讀:
應用:
提高基因的異源表達
可通過分析密碼子使用模式,預測目的基因的最佳宿主;或者應用基因工程手段,為目的基因表達提供最優的密碼子使用模式。3種不同的方式,目的都是利用密碼子偏性來提高異源基因的表達。
翻譯起始效應
mRNA濃度是翻譯起始速率的主要影響因素之一,密碼子直接影響轉錄效率,決定mRNA濃度。如單子葉植物在「翻譯起始區」的密碼子偏性大於「翻譯終止區」,暗示「翻譯起始區」的密碼子使用對提高蛋白翻譯的效率和精確性更為重要,因此,通過修飾編碼區5′端的DNA序列,來提高蛋白質的表達水平將有望成為可能。
影響蛋白質的結構與功能
基因的密碼子偏性與所編碼蛋白質結構域的連接區和二級結構單元的連接區有關、翻譯速率在連接區會降低。馬建民等通過聚類分析的方法研究發現,哺乳動物MHC基因的密碼子偏性與所編碼蛋白質的三級結構密切相關,並可通過影響mRNA不同區域的翻譯速度,來改變編碼蛋白質的空間構象。其研究所選取的蛋白結構單位是蛋白指紋,它在很大程度上也是一種蛋白功能單位,表明密碼子偏性與蛋白的功能也存在密切相關。改變密碼子使用模式可目的性改變特定蛋白質的結構與功能。
基因定位功能
密碼子的使用模式在細胞核和細胞質遺傳物質之間也存在差異,如核基因中的起始密碼子只有ATG,而線粒體基因中的起始密碼子為ATN;核基因中的終止密碼子TGA在線粒體基因中用來編碼色氨酸等。因此,可以通過比較密碼子的使用模式,來進行真核生物核糖體在細胞內以及未知蛋白基因在基因組的定位。
預測進化規律
類似的密碼子使用模式,預示著物種相近的親緣關系或生存環境。目前已有研究通過比較密碼子偏性的差異程度,來分析物種間的親緣關系和進化歷程。線粒體基因組具有母系遺傳、分子結構簡單、多態性豐富等優點,是一種重要的分子標記,研究其密碼子使用偏好性,可以很好地用於確定動物類群的遺傳分化和系統發生關系。
④ 遺傳密碼的歷史起源
除了少數的不同之外,地球上已知生物的遺傳密碼均非常接近;因此根據演化論,遺傳密碼應在生命歷史中很早期就出現。現有的證據表明遺傳密碼的設定並非是隨機的結果,對此有以下的可能解釋 :
韋斯(Carl Richard Woese)認為,一些氨基酸與它們相對應的密碼子有選擇性的化學結合力(立體化學假說,stereochemical hypothesis),這顯示現在復雜的蛋白質製造過程可能並非一早存在,最初的蛋白質可能是直接在核酸上形成。但王子暉(J. Tze-Fei Wong)認為,氨基酸和相應編碼的忠實性反映了氨基酸生物合成路徑的相似性,並非物理化學性質的相似性(共進化假說,co-evolution hypothesis)。謝平指出,遺傳密碼子是生化系統的一部分,因此,必須與生化系統的演化相關聯,而生化系統的核心是ATP,只有它才能建立起核酸和蛋白質之間的聯系(ATP中心假說,ATP-centric hypothesis) :ATP(a)是光能轉化成化學能的終端,(b)導演了一系列的生化循環(如卡爾文循環、糖酵解和三羧酸循環等)及元素重組,(c)它通過自身的轉化與縮合將錯綜復雜的生命過程信息化——篩選出用4種鹼基編碼20多個氨基酸的三聯體密碼子系統、精巧地構建了一套遺傳信息的保存、復制、轉錄和翻譯以及多肽鏈的生產體系,(d)演繹出蛋白質與核酸互為因果的反饋體系,在個體生存的方向性篩選中,構築了對細胞內成百上千種同步發生的生化反應進行秩序化管控(自組織)的復雜體系與規則,並最終建立起個性生命的同質化傳遞機制——遺傳。
原始的遺傳密碼可能比今天簡單得多,隨著生命演化製造出新的氨基酸再被利用而令遺傳密碼變得復雜。雖然不少證據證明這一觀點,但詳細的演化過程仍在探索之中。經過自然選擇,現時的遺傳密碼減低了突變造成的不良影響。Knight等認為,遺傳密碼是由選擇(selection)、歷史(history)和化學(chemistry)三個因素在不同階段起作用的(綜合進化假說) 。
其它假說:艾根提出了試管選擇(in vitro selection)假說,奧格爾(Leslie Eleazer Orgel)提出了解碼(decoding)機理起源假說,杜維(Christian de Duve)提出了第二遺傳密碼(second genetic code)假說。Wu等推測,三聯體密碼從兩種類型的雙聯體密碼逐漸進化而來, 這兩種雙聯體密碼是按照三聯體密碼中固定的鹼基位置來劃分的, 包括前綴密碼子(Prefix codons)和後綴密碼子(Suffix codons)。不過,Baranov等推測三聯體密碼子是從更長的密碼子(如四聯體密碼子quadruplet codons)演變而來,因為長的密碼子具有更多的編碼冗餘從而能抵禦更大的突變壓力 。
⑤ 基因的基因(密碼子)起源
基因就是編譯氨基酸的密碼子,因此,密碼子的起源就是基因的起源。除了少數的不同之外,地球上已知生物的遺傳密碼均非常接近;因此根據演化論,遺傳密碼應在生命歷史中很早期就出現。現有的證據表明遺傳密碼的設定並非是隨機的結果,對此有以下的可能解釋:
韋斯(Carl Richard Woese)認為,一些氨基酸與它們相對應的密碼子有選擇性的化學結合力(立體化學假說,stereochemical hypothesis),這顯示現在復雜的蛋白質製造過程可能並非一早存在,最初的蛋白質可能是直接在核酸上形成。但王子暉(J. Tze-Fei Wong)認為,氨基酸和相應編碼的忠實性反映了氨基酸生物合成路徑的相似性,並非物理化學性質的相似性(共進化假說,co-evolution hypothesis)。謝平提出,遺傳密碼子是生化系統的一部分,因此,必須與生化系統的演化相關聯,而生化系統的核心是ATP,只有它才能建立起核酸和蛋白質之間的聯系(ATP中心假說,ATP-centric hypothesis) 。
原始的遺傳密碼可能比今天簡單得多,隨著生命演化製造出新的氨基酸再被利用而令遺傳密碼變得復雜。雖然不少證據證明這一觀點,但詳細的演化過程仍在探索之中。經過自然選擇,現時的遺傳密碼減低了突變造成的不良影響。Knight等認為,遺傳密碼是由選擇(selection)、歷史(history)和化學(chemistry)三個因素在不同階段起作用的(綜合進化假說)。
其它假說:艾根提出了試管選擇(in vitro selection)假說,奧格爾(Leslie Eleazer Orgel)提出了解碼(decoding)機理起源假說,杜維(Christian de Duve)提出了第二遺傳密碼(second genetic code)假說。Wu等推測,三聯體密碼從兩種類型的雙聯體密碼逐漸進化而來, 這兩種雙聯體密碼是按照三聯體密碼中固定的鹼基位置來劃分的, 包括前綴密碼子(Prefix codons)和後綴密碼子(Suffix codons)。不過,Baranov等推測三聯體密碼子是從更長的密碼子(如四聯體密碼子quadruplet codons)演變而來,因為長的密碼子具有更多的編碼冗餘從而能抵禦更大的突變壓力。
⑥ 高中生物遺傳與進化中發現遺傳密碼對應規則的實驗有一地方不懂
「起始密碼子」的功能並不是「使翻譯開始」,而是「定位翻譯開始位置的信號標記」。
比如做多聚尿嘧啶核糖核苷酸指導合成多聚苯丙氨酸肽鏈的實驗用的就是大腸桿菌的核糖體,正常的mRNA上有一段叫做Shine-Dalgarno sequence的區域,能夠引導mRNA的AUG密碼子定位到核糖體RNA 3'末端與之互補的位置上。然後翻譯能夠按照正常的密碼子順序進行。
而對於人工合成的mRNA,沒有Shine-Dalgarno sequence,也沒有起始密碼子,所以翻譯開始的位置是隨機的,核糖體和mRNA結合的位置在哪裡,翻譯就從哪裡開始,因為都是U,所以不管從哪裡開始,氨基酸都是Phe。
如果人工合成的mRNA不止一種鹼基,比如是UUUAAAUUUAAA……這樣子的,那麼翻譯出來的就不會只有UUU和AAA的氨基酸,還會有UUA,UAA,AAU,AUU的氨基酸,因為開始閱讀密碼子的位置是隨機的。
所以這個實驗只要明確是UUU就可以了,其它不影響
⑦ 遺傳密碼在遺傳信息中的作用
遺傳信息是指遺傳物質(DNA)中鹼基的排列順序.而遺傳密碼是指RNA上鹼基排列順序版,是DNA一條鏈復制權而來的.遺傳密碼在信使RNA(mRNA)的翻譯合成蛋白質的過程中起到了不可替代的作用。好了知道的就這么多``閃
⑧ 密碼子的起源
除了少數的不同之外,地球上已知生物的遺傳密碼均非常接近;因此根據演化論,遺傳密碼應在生命歷史中很早期就出現。現有的證據表明遺傳密碼的設定並非是隨機的結果,對此有以下的可能解釋:
最近一項研究顯示,一些氨基酸與它們相對應的密碼子有選擇性的化學結合力(立體化學假說,stereochemical hypothesis),這顯示現在復雜的蛋白質製造過程可能並非一早存在,最初的蛋白質可能是直接在核酸上形成。但也有學者認為,氨基酸和相應編碼的忠實性反映了氨基酸生物合成路徑的相似性,並非物理化學性質的相似性(共進化假說,co-evolution hypothesis)。謝平指出,遺傳密碼子是生化系統的一部分,因此,必須與生化系統的演化相關聯,而生化系統的核心是ATP,只有它才能建立起核酸和蛋白質之間的聯系(ATP中心假說,ATP-centric hypothesis) :ATP(a)是光能轉化成化學能的終端,(b)導演了一系列的生化循環(如卡爾文循環、糖酵解和三羧酸循環等)及元素重組,(c)它通過自身的轉化與縮合將錯綜復雜的生命過程信息化——篩選出用4種鹼基編碼20多個氨基酸的三聯體密碼子系統、精巧地構建了一套遺傳信息的保存、復制、轉錄和翻譯以及多肽鏈的生產體系,(d)演繹出蛋白質與核酸互為因果的反饋體系,在個體生存的方向性篩選中,構築了對細胞內成百上千種同步發生的生化反應進行秩序化管控(自組織)的復雜體系與規則,並最終建立起個性生命的同質化傳遞機制——遺傳 。
原始的遺傳密碼可能比今天簡單得多,隨著生命演化製造出新的氨基酸再被利用而令遺傳密碼變得復雜。雖然不少證據證明這觀點,但詳細的演化過程仍在探索之中,。 經過自然選擇,現時的遺傳密碼減低了突變造成的不良影響。即,遺傳密碼是由選擇(selection)、歷史(history)和化學(chemistry)三個因素在不同階段起作用的(綜合進化假說) 。
⑨ 遺傳密碼有那些特點這些特點有何生物學意義 (主要是生物學意義) 考研 生物 簡答題
簡並性。變偶性。通用性。變異性。密碼子一共有64個,除了三個終止密碼子外,61個密碼子編碼20個氨基酸,只有甲流氨酸與色氨酸只有一個密碼子其餘都有兩個及以上密碼子。這種簡並性可以減少有害突變。邊偶性。密碼子的簡並性變現在第三為鹼基上,第一第二偉鹼基一般是嚴格配對,這一現象為變偶性。可以減少因基因突變對生物的危害。通用性是所有生物公用一套密碼子表。說明生物有共同的起源,同時也說明密碼子十分保守。