遺傳演算法范圍
Ⅰ 請問matlab中遺傳演算法裡面的bound(也就是個體范圍,變數邊界)是如何確定的
簡單介紹一下思自路:
最重要的是確定適應度函數,只要確定這個函數就很容易了,就用你不會編程,直接調用matlab的工具箱就行了。
1st.設置種群規模,並初始化種群p,並計算各個個體的適應度。
例如,20個個體,每個個體包含5個變數,x1,x2,x3,x4,x5.
如果你用matlab來編程的話,這個可以很容易實現,會用到random('unif',a,b)這個函數吧。
例如x1的取值范圍是[0,1],那麼x1=random('unif',0,1).
Ⅱ 遺傳演算法可以給優化結果設置范圍嗎
你可以設置停止迭代的條件之一是y在區間內。
如果一定在【10,20】內,就應該在適應度函數中做這個條件的添加,例如比較簡單的在這個外圍外加上一個很大的罰值,但是容易你求不到最優解,所以你要在前面編碼的時候把范圍給好。
Ⅲ 遺傳演算法的基本框架
遺傳演算法不能直接處理問題空間的參數,必須把它們轉換成遺傳空間的由基因按一定結構組成的染色體或個體。這一轉換操作就叫做編碼,也可以稱作(問題的)表示(representation)。
評估編碼策略常採用以下3個規范:
a)完備性(completeness):問題空間中的所有點(候選解)都能作為GA空間中的點(染色體)表現。
b)健全性(soundness): GA空間中的染色體能對應所有問題空間中的候選解。
c)非冗餘性(nonrendancy):染色體和候選解一一對應。
目前的幾種常用的編碼技術有二進制編碼,浮點數編碼,字元編碼,變成編碼等。
而二進制編碼是目前遺傳演算法中最常用的編碼方法。即是由二進制字元集{0,1}產生通常的0,1字元串來表示問題空間的候選解。它具有以下特點:
a)簡單易行
b)符合最小字元集編碼原則
c)便於用模式定理進行分析,因為模式定理就是以基礎的。 進化論中的適應度,是表示某一個體對環境的適應能力,也表示該個體繁殖後代的能力。遺傳演算法的適應度函數也叫評價函數,是用來判斷群體中的個體的優劣程度的指標,它是根據所求問題的目標函數來進行評估的。
遺傳演算法在搜索進化過程中一般不需要其他外部信息,僅用評估函數來評估個體或解的優劣,並作為以後遺傳操作的依據。由於遺傳演算法中,適應度函數要比較排序並在此基礎上計算選擇概率,所以適應度函數的值要取正值。由此可見,在不少場合,將目標函數映射成求最大值形式且函數值非負的適應度函數是必要的。
適應度函數的設計主要滿足以下條件:
a)單值、連續、非負、最大化
b) 合理、一致性
c)計算量小
d)通用性強。
在具體應用中,適應度函數的設計要結合求解問題本身的要求而定。適應度函數設計直接影響到遺傳演算法的性能。 遺傳演算法中初始群體中的個體是隨機產生的。一般來講,初始群體的設定可採取如下的策略:
a)根據問題固有知識,設法把握最優解所佔空間在整個問題空間中的分布范圍,然後,在此分布范圍內設定初始群體。
b)先隨機生成一定數目的個體,然後從中挑出最好的個體加到初始群體中。這種過程不斷迭代,直到初始群體中個體數達到了預先確定的規模。
Ⅳ 遺傳演算法的基本原理
遺傳演算法通常的實現方式,就是用程序來模擬生物種群進化的過程。對於一個求專最優解的問題,我屬們可以把一定數量的候選解(稱為個體)抽象地表示為染色體,使種群向更好的解來進化。大家知道,使用演算法解決問題的時候,解通常都是用數據或者字元串等表示的,而這個數據或字元串對應到生物中就是某個個體的「染色體」。進化從完全隨機個體的種群開始,之後一代一代發生。在每一代中評價其在整個種群的適應度,從當前種群中隨機地選擇多個個體(基於它們的適應度),通過自然選擇和突變產生新的種群,該種群在演算法的下一次迭代中成為當前種群。其具體的計算步驟如下:
編碼:將問題空間轉換為遺傳空間;
生成初始種群:隨機生成P個染色體;
種群適應度計算:按照確定的適應度函數,計算各個染色體的適應度;
選擇:根據染色體適應度,按照選擇運算元進行染色體的選擇;
交叉:按照交叉概率對被選擇的染色體進行交叉操作,形成下一代種群;
突變:按照突變概率對下一代種群中的個體進行突變操作;
返回第3步繼續迭代,直到滿足終止條件。
Ⅳ 遺傳演算法具體應用
1、函數優化
函數優化是遺傳演算法的經典應用領域,也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。
2、組合優化
隨著問題規模的增大,組合優化問題的搜索空間也急劇增大,有時在目前的計算上用枚舉法很難求出最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。
此外,GA也在生產調度問題、自動控制、機器人學、圖象處理、人工生命、遺傳編碼和機器學習等方面獲得了廣泛的運用。
3、車間調度
車間調度問題是一個典型的NP-Hard問題,遺傳演算法作為一種經典的智能演算法廣泛用於車間調度中,很多學者都致力於用遺傳演算法解決車間調度問題,現今也取得了十分豐碩的成果。
從最初的傳統車間調度(JSP)問題到柔性作業車間調度問題(FJSP),遺傳演算法都有優異的表現,在很多算例中都得到了最優或近優解。
(5)遺傳演算法范圍擴展閱讀:
遺傳演算法的缺點
1、編碼不規范及編碼存在表示的不準確性。
2、單一的遺傳演算法編碼不能全面地將優化問題的約束表示出來。考慮約束的一個方法就是對不可行解採用閾值,這樣,計算的時間必然增加。
3、遺傳演算法通常的效率比其他傳統的優化方法低。
4、遺傳演算法容易過早收斂。
5、遺傳演算法對演算法的精度、可行度、計算復雜性等方面,還沒有有效的定量分析方法。
Ⅵ 如果我有4個輸入,遺傳演算法極值尋優中定義個體長度為4怎麼定義還有數據的范圍是只定義輸入和輸出的范圍
改lenchrom為[1 1 1 1],bound=[0 1750; 258 712; lb ub; LB UB],其中的ub UB, lb LB分別為新增個體的上下限
Ⅶ 關於遺傳演算法
遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法,它最初由美國Michigan大學J.Holland教授於1975年首先提出來的,並出版了頗有影響的專著《Adaptation in Natural and Artificial Systems》,GA這個名稱才逐漸為人所知,J.Holland教授所提出的GA通常為簡單遺傳演算法(SGA)。
遺傳演算法定義
遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼,初代種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度(fitness)大小選擇(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群像自然進化一樣的後生代種群比前代更加適應於環境,末代種群中的最優個體經過解碼(decoding),可以作為問題近似最優解。
[編輯本段]遺傳演算法特點
遺傳演算法是解決搜索問題的一種通用演算法,對於各種通用問題都可以使用。搜索演算法的共同特徵為:
① 首先組成一組候選解;
② 依據某些適應性條件測算這些候選解的適應度;
③ 根據適應度保留某些候選解,放棄其他候選解;
④ 對保留的候選解進行某些操作,生成新的候選解。
在遺傳演算法中,上述幾個特徵以一種特殊的方式組合在一起:基於染色體群的並行搜索,帶有猜測性質的選擇操作、交換操作和突變操作。這種特殊的組合方式將遺傳演算法與其它搜索演算法區別開來。
遺傳演算法還具有以下幾方面的特點:
(1)遺傳演算法從問題解的串集開始嫂索,而不是從單個解開始。這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;容易誤入局部最優解。遺傳演算法從串集開始搜索,覆蓋面大,利於全局擇優。
(2)許多傳統搜索演算法都是單點搜索演算法,容易陷入局部的最優解。遺傳演算法同時處理群體中的多個個體,即對搜索空間中的多個解進行評估,減少了陷入局部最優解的風險,同時演算法本身易於實現並行化。
(3)遺傳演算法基本上不用搜索空間的知識或其它輔助信息,而僅用適應度函數值來評估個體,在此基礎上進行遺傳操作。適應度函數不僅不受連續可微的約束,而且其定義域可以任意設定。這一特點使得遺傳演算法的應用范圍大大擴展。
(4)遺傳演算法不是採用確定性規則,而是採用概率的變遷規則來指導他的搜索方向。
(5)具有自組織、自適應和自學習性。遺傳演算法利用進化過程獲得的信息自行組織搜索時,硬度大的個體具有較高的生存概率,並獲得更適應環境的基因結構。
[編輯本段]遺傳演算法的應用
由於遺傳演算法的整體搜索策略和優化搜索方法在計算是不依賴於梯度信息或其它輔助知識,而只需要影響搜索方向的目標函數和相應的適應度函數,所以遺傳演算法提供了一種求解復雜系統問題的通用框架,它不依賴於問題的具體領域,對問題的種類有很強的魯棒性,所以廣泛應用於許多科學,下面我們將介紹遺傳演算法的一些主要應用領域:
1、 函數優化。
函數優化是遺傳演算法的經典應用領域,也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。對於一些非線性、多模型、多目標的函數優化問題,用其它優化方法較難求解,而遺傳演算法可以方便的得到較好的結果。
2、 組合優化
隨著問題規模的增大,組合優化問題的搜索空間也急劇增大,有時在目前的計算上用枚舉法很難求出最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。實踐證明,遺傳演算法對於組合優化中的NP問題非常有效。例如遺傳演算法已經在求解旅行商問題、 背包問題、裝箱問題、圖形劃分問題等方面得到成功的應用。
此外,GA也在生產調度問題、自動控制、機器人學、圖象處理、人工生命、遺傳編碼和機器學習等方面獲得了廣泛的運用。
[編輯本段]遺傳演算法的現狀
進入90年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳演算法的應用研究顯得格外活躍,不但它的應用領域擴大,而且利用遺傳演算法進行優化和規則學習的能力也顯著提高,同時產業應用方面的研究也在摸索之中。此外一些新的理論和方法在應用研究中亦得到了迅速的發展,這些無疑均給遺傳演算法增添了新的活力。遺傳演算法的應用研究已從初期的組合優化求解擴展到了許多更新、更工程化的應用方面。
隨著應用領域的擴展,遺傳演算法的研究出現了幾個引人注目的新動向:一是基於遺傳演算法的機器學習,這一新的研究課題把遺傳演算法從歷來離散的搜索空間的優化搜索演算法擴展到具有獨特的規則生成功能的嶄新的機器學習演算法。這一新的學習機制對於解決人工智慧中知識獲取和知識優化精煉的瓶頸難題帶來了希望。二是遺傳演算法正日益和神經網路、模糊推理以及混沌理論等其它智能計算方法相互滲透和結合,這對開拓21世紀中新的智能計算技術將具有重要的意義。三是並行處理的遺傳演算法的研究十分活躍。這一研究不僅對遺傳演算法本身的發展,而且對於新一代智能計算機體系結構的研究都是十分重要的。四是遺傳演算法和另一個稱為人工生命的嶄新研究領域正不斷滲透。所謂人工生命即是用計算機模擬自然界豐富多彩的生命現象,其中生物的自適應、進化和免疫等現象是人工生命的重要研究對象,而遺傳演算法在這方面將會發揮一定的作用,五是遺傳演算法和進化規劃(Evolution Programming,EP)以及進化策略(Evolution Strategy,ES)等進化計算理論日益結合。EP和ES幾乎是和遺傳演算法同時獨立發展起來的,同遺傳演算法一樣,它們也是模擬自然界生物進化機制的智能計算方法,即同遺傳演算法具有相同之處,也有各自的特點。目前,這三者之間的比較研究和彼此結合的探討正形成熱點。
1991年D.Whitey在他的論文中提出了基於領域交叉的交叉運算元(Adjacency based crossover),這個運算元是特別針對用序號表示基因的個體的交叉,並將其應用到了TSP問題中,通過實驗對其進行了驗證。
D.H.Ackley等提出了隨即迭代遺傳爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)採用了一種復雜的概率選舉機制,此機制中由m個「投票者」來共同決定新個體的值(m表示群體的大小)。實驗結果表明,SIGH與單點交叉、均勻交叉的神經遺傳演算法相比,所測試的六個函數中有四個表現出更好的性能,而且總體來講,SIGH比現存的許多演算法在求解速度方面更有競爭力。
H.Bersini和G.Seront將遺傳演算法與單一方法(simplex method)結合起來,形成了一種叫單一操作的多親交叉運算元(simplex crossover),該運算元在根據兩個母體以及一個額外的個體產生新個體,事實上他的交叉結果與對三個個體用選舉交叉產生的結果一致。同時,文獻還將三者交叉運算元與點交叉、均勻交叉做了比較,結果表明,三者交叉運算元比其餘兩個有更好的性能。
國內也有不少的專家和學者對遺傳演算法的交叉運算元進行改進。2002年,戴曉明等應用多種群遺傳並行進化的思想,對不同種群基於不同的遺傳策略,如變異概率,不同的變異運算元等來搜索變數空間,並利用種群間遷移運算元來進行遺傳信息交流,以解決經典遺傳演算法的收斂到局部最優值問題
2004年,趙宏立等針對簡單遺傳演算法在較大規模組合優化問題上搜索效率不高的現象,提出了一種用基因塊編碼的並行遺傳演算法(Building-block Coded Parallel GA,BCPGA)。該方法以粗粒度並行遺傳演算法為基本框架,在染色體群體中識別出可能的基因塊,然後用基因塊作為新的基因單位對染色體重新編碼,產生長度較短的染色體,在用重新編碼的染色體群體作為下一輪以相同方式演化的初始群體。
2005年,江雷等針對並行遺傳演算法求解TSP問題,探討了使用彈性策略來維持群體的多樣性,使得演算法跨過局部收斂的障礙,向全局最優解方向進化。
[編輯本段]遺傳演算法的一般演算法
遺傳演算法是基於生物學的,理解或編程都不太難。下面是遺傳演算法的一般演算法:
創建一個隨機的初始狀態
初始種群是從解中隨機選擇出來的,將這些解比喻為染色體或基因,該種群被稱為第一代,這和符號人工智慧系統的情況不一樣,在那裡問題的初始狀態已經給定了。
評估適應度
對每一個解(染色體)指定一個適應度的值,根據問題求解的實際接近程度來指定(以便逼近求解問題的答案)。不要把這些「解」與問題的「答案」混為一談,可以把它理解成為要得到答案,系統可能需要利用的那些特性。
繁殖(包括子代突變)
帶有較高適應度值的那些染色體更可能產生後代(後代產生後也將發生突變)。後代是父母的產物,他們由來自父母的基因結合而成,這個過程被稱為「雜交」。
下一代
如果新的一代包含一個解,能產生一個充分接近或等於期望答案的輸出,那麼問題就已經解決了。如果情況並非如此,新的一代將重復他們父母所進行的繁衍過程,一代一代演化下去,直到達到期望的解為止。
並行計算
非常容易將遺傳演算法用到並行計算和群集環境中。一種方法是直接把每個節點當成一個並行的種群看待。然後有機體根據不同的繁殖方法從一個節點遷移到另一個節點。另一種方法是「農場主/勞工」體系結構,指定一個節點為「農場主」節點,負責選擇有機體和分派適應度的值,另外的節點作為「勞工」節點,負責重新組合、變異和適應度函數的評估。
術語說明
由於遺傳演算法是由進化論和遺傳學機理而產生的搜索演算法,所以在這個演算法中會用到很多生物遺傳學知識,下面是我們將會用來的一些術語說明:
一、染色體(Chronmosome)
染色體又可以叫做基因型個體(indivials),一定數量的個體組成了群體(population),群體中個體的數量叫做群體大小。
二、基因(Gene)
基因是串中的元素,基因用於表示個體的特徵。例如有一個串S=1011,則其中的1,0,1,1這4個元素分別稱為基因。它們的值稱為等位基因(Alletes)。
三、基因地點(Locus)
基因地點在演算法中表示一個基因在串中的位置稱為基因位置(Gene Position),有時也簡稱基因位。基因位置由串的左向右計算,例如在串 S=1101 中,0的基因位置是3。
四、基因特徵值(Gene Feature)
在用串表示整數時,基因的特徵值與二進制數的權一致;例如在串 S=1011 中,基因位置3中的1,它的基因特徵值為2;基因位置1中的1,它的基因特徵值為8。
五、適應度(Fitness)
各個個體對環境的適應程度叫做適應度(fitness)。為了體現染色體的適應能力,引入了對問題中的每一個染色體都能進行度量的函數,叫適應度函數. 這個函數是計算個體在群體中被使用的概率。
[編輯本段]遺傳演算法的運算過程
選擇(復制):
根據各個個體的適應度,按照一定的規則或方法,從第t代群體P(t)中選擇出一些優良的個體遺傳到下 一代群體P(t+1)中;
交叉:
將群體P(t)內的各個個體隨機搭配成對,對每一對個體,以某個概率(稱為交叉概率)交換它們之間的部分染色體;
變異:
對群體P(t)中的每一個個體,以某一概率(稱為變異概率)改變某一個或某一些基因座上的基因值為其他基因值。
Ⅷ 遺傳演算法的核心是什麼!
遺傳操作的交叉運算元。
在自然界生物進化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳演算法中起核心作用的是遺傳操作的交叉運算元。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。通過交叉,遺傳演算法的搜索能力得以飛躍提高。
交叉運算元根據交叉率將種群中的兩個個體隨機地交換某些基因,能夠產生新的基因組合,期望將有益基因組合在一起。
(8)遺傳演算法范圍擴展閱讀
評估編碼策略常採用以下3個規范:
a)完備性(completeness):問題空間中的所有點(候選解)都能作為GA空間中的點(染色體)表現。
b)健全性(soundness): GA空間中的染色體能對應所有問題空間中的候選解。
c)非冗餘性(nonrendancy):染色體和候選解一一對應。
目前的幾種常用的編碼技術有二進制編碼,浮點數編碼,字元編碼,變成編碼等。
而二進制編碼是目前遺傳演算法中最常用的編碼方法。即是由二進制字元集{0,1}產生通常的0,1字元串來表示問題空間的候選解。
Ⅸ 求一個用matlab編程遺傳演算法的程序,以確定一個圖形的大致范圍的,謝謝!
可以調用遺傳演算法工具箱。最好給個例子。謝謝。答好了可以追加20分。問題我給你查了一下,網上暫時找不到合適的matlab代碼,相關的文獻還是有的。