當前位置:首頁 » 遺傳因素 » 遺傳演算法的發展歷史

遺傳演算法的發展歷史

發布時間: 2021-03-24 23:15:20

遺傳演算法研究進展

遺傳演算法[56,53]研究的興起是在20世紀80年代末和90年代初期,但它的歷史起源可追溯到20世紀60年代初期。早期的研究大多以對自然遺傳系統的計算機模擬為主。早期遺傳演算法的研究特點是側重於對一些復雜的操作的研究。雖然其中像自動博弈、生物系統模擬、模式識別和函數優化等給人以深刻的印象,但總的來說這是一個無明確目標的發展時期,缺乏帶有指導性的理論和計算工具的開拓。這種現象直到20世紀70年代中期由於Holland和De Jong的創造性研究成果的發表才得到改觀。當然,早期的研究成果對於遺傳演算法的發展仍然有一定的影響,尤其是其中一些有代表性的技術和方法已為當前的遺傳演算法所吸收和發展。

在遺傳演算法作為搜索方法用於人工智慧系統中之前,已有不少生物學家用計算機來模擬自然遺傳系統。尤其是Fraser的模擬研究,他於1962年提出了和現在的遺傳演算法十分相似的概念和思想。但是,Fraser和其他一些學者並未認識到自然遺傳演算法可以轉化為人工遺傳演算法。Holland教授及其學生不久就認識到這一轉化的重要性,Holland認為比起尋找這種或那種具體的求解問題的方法來說,開拓一種能模擬自然選擇遺傳機制的帶有一般性的理論和方法更有意義。在這一時期,Holland不但發現了基於適應度的人工遺傳選擇的基本作用,而且還對群體操作等進行了認真的研究。1965年,他首次提出了人工遺傳操作的重要性,並把這些應用於自然系統和人工系統中。

1967年,Bagley在他的論文中首次提出了遺傳演算法(genetic algorithm)這一術語,並討論了遺傳演算法在自動博弈中的應用。他所提出的包括選擇、交叉和變異的操作已與目前遺傳演算法中的相應操作十分接近。尤其是他對選擇操作做了十分有意義的研究。他認識到,在遺傳進化過程的前期和後期,選擇概率應合適地變動。為此,他引入了適應度定標(scaling)概念,這是目前遺傳演算法中常用的技術。同時,他也首次提出了遺傳演算法自我調整概念,即把交叉和變異的概率融於染色體本身的編碼中,從而可實現演算法自我調整優化。盡管Bagley沒有對此進行計算機模擬實驗,但這些思想對於後來遺傳演算法的發展所起的作用是十分明顯的。

在同一時期,Rosenberg也對遺傳演算法進行了研究,他的研究依然是以模擬生物進化為主,但他在遺傳操作方面提出了不少獨特的設想。1970年Cavicchio把遺傳演算法應用於模式識別中。實際上他並未直接涉及到模式識別,而僅用遺傳演算法設計一組用於識別的檢測器。Cavicchio對於遺傳操作以及遺傳演算法的自我調整也做了不少有特色的研究。

Weinberg於1971年發表了題為《活細胞的計算機模擬》的論文。由於他和Rosenberg一樣注意於生物遺傳的模擬,所以他對遺傳演算法的貢獻有時被忽略。實際上,他提出的多層次或多級遺傳演算法至今仍給人以深刻的印象。

第一個把遺傳演算法用於函數優化的是Hollstien。1971年他在論文《計算機控制系統中的人工遺傳自適應方法》中闡述了遺傳演算法用於數字反饋控制的方法。實際上,他主要是討論了對於二變數函數的優化問題。其中,對於優勢基因控制、交叉和變異以及各種編碼技術進行了深入的研究。

1975年在遺傳演算法研究的歷史上是十分重要的一年。這一年,Holland出版了他的著名專著《自然系統和人工系統的適配》。該書系統地闡述了遺傳演算法的基本理論和方法,並提出了對遺傳演算法的理論研究和發展極為重要的模式理論(schemata theory)。該理論首次確認了結構重組遺傳操作對於獲得隱並行性的重要性。直到這時才知道遺傳操作到底在干什麼,為什麼又幹得那麼出色,這對於以後陸續開發出來的遺傳操作具有不可估量的指導作用。

同年,De Jong完成了他的重要論文《遺傳自適應系統的行為分析》。他在該論文中所做的研究工作可看作是遺傳演算法發展進程中的一個里程碑,這是因為他把Holland的模式理論與他的計算實驗結合起來。盡管De Jong和Hollstien一樣主要側重於函數優化的應用研究,但他將選擇、交叉和變異操作進一步完善和系統化,同時又提出了諸如代溝(generation gap)等新的遺傳操作技術。可以認為,De Jong的研究工作為遺傳演算法及其應用打下了堅實的基礎,他所得出的許多結論迄今仍具有普遍的指導意義。

進入20世紀80年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳演算法的應用研究顯得格外活躍,不但它的應用領域擴大,而且利用遺傳演算法進行優化和規則學習的能力也顯著提高,同時產業應用方面的研究也在摸索之中。此外一些新的理論和方法在應用研究中亦得到了迅速的發展,這些無疑均給遺傳演算法增添了新的活力。

隨著應用領域的擴展,遺傳演算法的研究出現了幾個引人注目的新動向:一是基於遺傳演算法的機器學習(Genetic Base Machine Learning),這一新的研究課題把遺傳演算法從歷來離散的搜索空間的優化搜索演算法擴展到具有獨特的規則生成功能的嶄新的機器學習演算法。這一新的學習機制對於解決人工智慧中知識獲取和知識優化精煉的瓶頸難題帶來了希望。二是遺傳演算法正日益和神經網路、模糊推理以及混沌理論等其他智能計算方法相互滲透和結合,這對開拓21世紀中新的智能計算技術將具有重要的意義。三是並行處理的遺傳演算法的研究十分活躍。這一研究不僅對遺傳演算法本身的發展,而且對於新一代智能計算機體系結構的研究都是十分重要的。四是遺傳演算法和另一個稱為人工生命的嶄新研究領域正不斷滲透。所謂人工生命即是用計算機模擬自然界豐富多彩的生命現象,其中生物的自適應、進化和免疫等現象是人工生命的重要研究對象,而遺傳演算法在這方面將會發揮一定的作用。五是遺傳演算法和進化規劃(Evolution Programming,EP)以及進化策略(Evolution Strategy,ES)等進化計算理論日益結合。EP和ES幾乎是和遺傳演算法同時獨立發展起來的,同遺傳演算法一樣,它們也是模擬自然界生物進化機制的智能計算方法,既同遺傳演算法具有相同之處,也有各自的特點。

隨著遺傳演算法研究和應用的不斷深入和發展,一系列以遺傳演算法為主題的國際會議十分活躍。從1985年開始,國際遺傳演算法會議,即ICGA(International Conference on Genetic Algorithm)每兩年舉行一次。在歐洲,從1990年開始也每隔一年舉辦一次類似的會議,即 PPSN(Parallel Problem Solving from Nature)會議。除了遺傳演算法外,大部分有關ES和EP的學術論文也出現在PPSN中。另外,以遺傳演算法的理論基礎為中心的學術會議有FOGA(Foundation of Genetic Algorithm)。它也是從1990年開始,隔年召開一次。這些國際學術會議論文集中反映了遺傳演算法近些年來的最新發展和動向。

Ⅱ 遺傳演算法的發展歷史怎樣

各種考古學資料表明,人類在遠古時代就已經知道優良動植物能夠產生與之相似的優良後代的現象,並通過選擇和培育有用的動植物以用於各種生活目的。公元前8000年到1000年,古埃及人就開始通過飼養瞪羚作為食物,以後又用綿羊和山羊代替瞪羚並用來

Ⅲ 量子遺傳演算法的國內外研究現狀

1、模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的;
2、中國知網、萬方等國內學術期刊已經提供了大量的文獻下載。如果你在學校的話,就可以免費下載這些文獻,然後去總結遺傳演算法的發展現狀,不在學校里,那麼可以去豆丁網、網路、道客巴巴。

Ⅳ 什麼是蟻群演算法,神經網路演算法,遺傳演算法

蟻群演算法又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。

神經網路
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。目前,主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機饃擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
遺傳演算法,是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法,它最初由美國Michigan大學J.Holland教授於1975年首先提出來的,並出版了頗有影響的專著《Adaptation in Natural and Artificial Systems》,GA這個名稱才逐漸為人所知,J.Holland教授所提出的GA通常為簡單遺傳演算法(SGA)。

Ⅳ 計算機體系結構的發展歷程

計算機系統已經經歷了四個不同的發展階段。 計算機系統發展的第三代從20世紀70年代中期開始,並且跨越了整整10年。在這10年中計算機技術又有了很大進步。分布式系統極大地增加亍計算機系統的復雜性,區域網、廣域網、寬頻數字通信以及對「即時」數據訪問需求的增加,都對軟體開發者提出了更高的要求。但是,在這個時期軟體仍然主要在工業界和學術界應用,個人應用還很少。這個時期的主要特點是出現了微處理器,而且微處理器獲得了廣泛應用。以微處理器為核心的「智能」產品隨處可見,當然,最重要的智能產品是個人計算機。在不到10年的時間里,個人計算機已經成為大眾化的商品。
在計算機系統發展的第四代已經不再看重單台計算機和程序,人們感受到的是硬體和軟體的綜合效果。由復雜操作系統控制的強大的桌面機及區域網和廣域網,與先進的應用軟體相配合,已經成為當前的主流。計算機體系結構已迅速地從集中的主機環境轉變成分布的客戶機/伺服器(或瀏覽器/伺服器)環境。世界范圍的信息網為人們進行廣泛交流和資源的充分共享提供了條件。軟體產業在世界經濟中已經佔有舉足輕重的地位。隨著時代的前進,新的技術也不斷地涌現出來。面向對象技術已經在許多領域迅速地取代了傳統的軟體開發方法。 軟體開發的「第四代技術」改變了軟體界開發計算機程序的方式。專家系統和人工智慧軟體終於從實驗室中走出來進入了實際應用,解決了大量實際問題。應用模糊邏輯的人工神經網路軟體,展現了模式識別與擬人信息處理的美好前景。虛擬現實技術與多媒體系統,使得與用戶的通信可以採用和以前完全不同的方法。遺傳演算法使我們有可能開發出駐留在大型並行生物計算機上的軟體。

Ⅵ 機器學習的發展史

機器學習是人工智慧研究較為年輕的分支,它的發展過程大體上可分為4個時期。
第一階段是在20世紀50年代中葉到60年代中葉,屬於熱烈時期。
第二階段是在20世紀60年代中葉至70年代中葉,被稱為機器學習的冷靜時期。
第三階段是從20世紀70年代中葉至80年代中葉,稱為復興時期。
機器學習的最新階段始於1986年。
機器學習進入新階段的重要表現在下列諸方面:
(1) 機器學習已成為新的邊緣學科並在高校形成一門課程。它綜合應用心理學、生物學和神經生理學以及數學、自動化和計算機科學形成機器學習理論基礎。
(2) 結合各種學習方法,取長補短的多種形式的集成學習系統研究正在興起。特別是連接學習符號學習的耦合可以更好地解決連續性信號處理中知識與技能的獲取與求精問題而受到重視。
(3) 機器學習與人工智慧各種基礎問題的統一性觀點正在形成。例如學習與問題求解結合進行、知識表達便於學習的觀點產生了通用智能系統SOAR的組塊學習。類比學習與問題求解結合的基於案例方法已成為經驗學習的重要方向。
(4) 各種學習方法的應用范圍不斷擴大,一部分已形成商品。歸納學習的知識獲取工具已在診斷分類型專家系統中廣泛使用。連接學習在聲圖文識別中占優勢。分析學習已用於設計綜合型專家系統。遺傳演算法與強化學習在工程式控制制中有較好的應用前景。與符號系統耦合的神經網路連接學習將在企業的智能管理與智能機器人運動規劃中發揮作用。
(5) 與機器學習有關的學術活動空前活躍。國際上除每年一次的機器學習研討會外,還有計算機學習理論會議以及遺傳演算法會議。

Ⅶ 遺傳演算法的發展過程

遺傳演算法的發展過程?
子群演算法介紹(摘自

Ⅷ 進化計算,遺傳演算法方面國內知名的 專家及教授都有哪些謝謝

關於「鼎」的來歷及作用:鼎本來是古代的烹飪之器,相當於現在的鍋,用以燉煮和盛放魚肉。許慎在《說文解字》里說:「鼎,三足兩耳,和五味之寶器也。」有三足圓鼎,也有四足方鼎。最早的鼎是黏土燒制的陶鼎,後來又有了用青銅鑄造的銅鼎。傳說夏禹曾收九牧之金鑄九鼎於荊山之下,以象徵九州,並在上面鐫刻魑魅魍魎的圖形,讓人們警惕,防止被其傷害。自從有了禹鑄九鼎的傳說,鼎就從一般的炊器而發展為傳國重器。國滅則鼎遷,夏朝滅,商朝興,九鼎遷於商都亳(bó)京;商朝滅,周朝興,九鼎又遷於周都鎬(hào)京。歷商至周,都把定都或建立王朝稱為「定鼎」。

鼎被視為傳國重器、國家和權力的象徵,「鼎」字也被賦予「顯赫」、「 尊貴」、「盛大」等引申意義,如:一言九鼎、大名鼎鼎、鼎盛時期、鼎力相助,等等。鼎又是旌功記績的禮器。周代的國君或王公大臣在重大慶典或接受賞賜時都要鑄鼎,以記載盛況。這種禮俗至今仍然有一定影響。為慶賀聯合國50華誕,中華人民共和國於1995年10月21日在聯合國總部,向聯合國贈送一尊青銅巨鼎——世紀寶鼎。西藏和平解放50周年慶典之際,中央政府向西藏自治區贈送「民族團結寶鼎」,矗立於拉薩人民會堂廣場,象徵民族團結和西藏各項事業鼎盛發展。此舉意義深遠,文化內涵豐厚。

鼎是我國青銅文化的代表。它是文明的見證,也是文化的載體。根據禹鑄九鼎的傳說,可以推想,我國遠在4000多年前就有了青銅的冶煉和鑄造技術;從地下發掘的商代大銅鼎,確鑿證明我國商代已是高度發達的青銅時代。中國歷史博物館收藏的「司母戊」大方鼎就是商代晚期的青銅鼎,長方、四足,高133厘米,重875公斤,是現存最大的商代青銅器。鼎腹內有「司母戊」三字,是商王為祭祀他的母親戊而鑄造的。清代出土的大盂鼎、大克鼎、毛公鼎和頌鼎等都是西周時期的著名青銅器。鼎和其他青銅器上的銘文記載了商周時代的典章制度和冊封、祭祀、征伐等史實,而且把西周時期的大篆文字傳給了後世,形成了具有很高審美價值的金文書法藝術,鼎也因此更加身價不凡,成為比其他青銅器更為重要的歷史文物。美學家李澤厚認為,中國青銅器以其「特有的三足器——鼎為核心代表,器制沉雄厚實,紋飾獰厲神秘,刻鏤深重凸出」,是我國青銅藝術成熟期最具審美價值的青銅藝術品。

現代漢字中的「鼎」字雖然經過了甲骨文、金文、小篆、隸書等多次變化,但仍然保留著「鼎」這一事物的風范和形體特點,其物其字幾乎融為一體,都有著豐富的文化內涵。

Ⅸ 小波分析法和遺傳演算法之間是什麼樣的關系

1、小波變換是通過縮放母小波(Mother wavelet)的寬度來獲得信號的頻率特徵, 通過平移母小波來獲得信號的時間信息。對母小波的縮放和平移操作是為了計算小波系數,這些小波系數反映了小波和局部信號之間的相關程度。小波變換基,既具有頻率局域性質,又具有時間局域性質。小波變換的多分辨度的變換,能在多個尺度上分解,便於觀察信號在不同尺度(解析度)上不同時間的特性。小波變換存在快速演算法,對於M點序列而言,計算復雜性為:O(M),處理快速。小波變換基函數有多種類型,可以是正交的,也可以是非正交(雙正交),比傅里葉變換更加靈活。小波分析的應用領域十分廣泛,它包括:數學領域的許多學科;信號分析、圖像處理;量子力學、理論物理;軍事電子對抗與武器的智能化;計算機分類與識別;音樂與語言的人工合成;醫學成像與診斷;地震勘探數據處理;大型機械的故障診斷等方面;例如,在數學方面,它已用於數值分析、構造快速數值方法、曲線曲面構造、微分方程求解、控制論等。在信號分析方面的濾波、去雜訊、壓縮、傳遞等。在圖像處理方面的圖像壓縮、分類、識別與診斷,去污等。在醫學成像方面的減少B超、CT、核磁共振成像的時間,提高解析度等。
(1)小波分析用於信號與圖像壓縮是小波分析應用的一個重要方面。它的特點是壓縮比高,壓縮速度快,壓縮後能保持信號與圖像的特徵不變,且在傳遞中可以抗干擾。基於小波分析的壓縮方法很多,比較成功的有小波包最好基方法,小波域紋理模型方法,小波變換零樹壓縮,小波變換向量壓縮等。
(2)小波在信號分析中的應用也十分廣泛。它可以用於邊界的處理與濾波、時頻分析、信噪分離與提取弱信號、求分形指數、信號的識別與診斷以及多尺度邊緣檢測等。
(3)在工程技術等方面的應用。包括計算機視覺、計算機圖形學、曲線設計、湍流、遠程宇宙的研究與生物醫學方面。
2、遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。它是現代有關智能計算中的關鍵技術。遺傳演算法的一些主要應用領域:
(1)函數優化
函數優化是遺傳演算法的經典應用領域,也是遺傳演算法進行性能評價的常用算例,許多人構造出了各種各樣復雜形式的測試函數:連續函數和離散函數、凸函數和凹函數、低維函數和高維函數、單峰函數和多峰函數等。對於一些非線性、多模型、多目標的函數優化問題,用其它優化方法較難求解,而遺傳演算法可以方便的得到較好的結果。
(2)組合優化
隨著問題規模的增大,組合優化問題的搜索空間也急劇增大,有時在目前的計算上用枚舉法很難求出最優解。對這類復雜的問題,人們已經意識到應把主要精力放在尋求滿意解上,而遺傳演算法是尋求這種滿意解的最佳工具之一。實踐證明,遺傳演算法對於組合優化中的NP問題非常有效。例如遺傳演算法已經在求解旅行商問題、 背包問題、裝箱問題、圖形劃分問題等方面得到成功的應用。 此外,GA也在生產調度問題、自動控制、機器人學、圖象處理、人工生命、遺傳編碼和機器學習等方面獲得了廣泛的運用。
綜上所述,小波分析法和遺傳演算法主要有一下幾方面的不同:(1)演算法原理不同;(2)演算法的應用側重領域不同。遺傳演算法不是求解小波分析函數的一種演算法。

熱點內容
法國電影小男孩在農場遇到一隻白狗 發布:2024-08-19 08:36:47 瀏覽:594
微光上有什麼恐怖片 發布:2024-08-19 05:25:40 瀏覽:915
穿越香港鬼片滅鬼的小說 發布:2024-08-19 03:36:10 瀏覽:833
惡之花都敏秀姐姐扮演者 發布:2024-08-19 02:22:07 瀏覽:321
thai好看電影 發布:2024-08-18 11:34:37 瀏覽:795
電影內容女的是傻子容易尿褲子,男的很窮單身漢 發布:2024-08-18 10:31:36 瀏覽:129
雙機巨幕廳和4k廳哪個好 發布:2024-08-18 10:18:41 瀏覽:818
日本僵屍片上世紀 發布:2024-08-18 07:32:00 瀏覽:537
怪物 韓國電影在線 發布:2024-08-18 03:49:17 瀏覽:491
第九區一樣的 發布:2024-08-17 23:16:05 瀏覽:528