當前位置:首頁 » 遺傳因素 » 遺傳演算法在tsp問題上的應用

遺傳演算法在tsp問題上的應用

發布時間: 2021-03-24 02:14:58

遺傳演算法解決tsp問題 為什麼要交叉和變異

參考答案:
第一種是定值,一般而言,交叉概率在0.9-0.97之間任取,變異概率在0.1-0.001之間任取;第回二種是自適應取,按交答叉或變異個體的適應度值以及當代的平均適應度值計算,每代的個體都不一樣,相關公式可以查資料得到.
謝謝採納

❷ 利用遺傳演算法求解TSP問題 從北京出發 四個城市

太復雜了
還是找專業的吧

❸ 遺傳演算法解決TSP問題

遺傳演算法在很多領域都得到應用;從神經網路研究的角度上考慮,最關心的是遺傳演算法在神經網路的應用。在遺傳演算法應用中,應先明確其特點和關鍵問題,才能對這種演算法深入了解,靈活應用,以及進一步研究開發。

一、遺傳演算法的特點

1.遺傳演算法從問題解的中集開始嫂索,而不是從單個解開始。

這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;容易誤入局部最優解。遺傳演算法從串集開始搜索,復蓋面大,利於全局擇優。

2.遺傳演算法求解時使用特定問題的信息極少,容易形成通用演算法程序。

由於遺傳演算法使用適應值這一信息進行搜索,並不需要問題導數等與問題直接相關的信息。遺傳演算法只需適應值和串編碼等通用信息,故幾乎可處理任何問題。

3.遺傳演算法有極強的容錯能力

遺傳演算法的初始串集本身就帶有大量與最優解甚遠的信息;通過選擇、交叉、變異操作能迅速排除與最優解相差極大的串;這是一個強烈的濾波過程;並且是一個並行濾波機制。故而,遺傳演算法有很高的容錯能力。

4.遺傳演算法中的選擇、交叉和變異都是隨機操作,而不是確定的精確規則。

這說明遺傳演算法是採用隨機方法進行最優解搜索,選擇體現了向最優解迫近,交叉體現了最優解的產生,變異體現了全局最優解的復蓋。

5.遺傳演算法具有隱含的並行性

遺傳演算法的基礎理論是圖式定理。它的有關內容如下:

(1)圖式(Schema)概念

一個基因串用符號集{0,1,*}表示,則稱為一個因式;其中*可以是0或1。例如:H=1x x 0 x x是一個圖式。

(2)圖式的階和長度

圖式中0和1的個數稱為圖式的階,並用0(H)表示。圖式中第1位數字和最後位數字間的距離稱為圖式的長度,並用δ(H)表示。對於圖式H=1x x0x x,有0(H)=2,δ(H)=4。

(3)Holland圖式定理

低階,短長度的圖式在群體遺傳過程中將會按指數規律增加。當群體的大小為n時,每代處理的圖式數目為0(n3)。

遺傳演算法這種處理能力稱為隱含並行性(Implicit Parallelism)。它說明遺傳演算法其內在具有並行處理的特質。

二、遺傳演算法的應用關鍵

遺傳演算法在應用中最關鍵的問題有如下3個

1.串的編碼方式

這本質是問題編碼。一般把問題的各種參數用二進制編碼,構成子串;然後把子串拼接構成「染色體」串。串長度及編碼形式對演算法收斂影響極大。

2.適應函數的確定

適應函數(fitness function)也稱對象函數(object function),這是問題求解品質的測量函數;往往也稱為問題的「環境」。一般可以把問題的模型函數作為對象函數;但有時需要另行構造。

3.遺傳演算法自身參數設定

遺傳演算法自身參數有3個,即群體大小n、交叉概率Pc和變異概率Pm。

群體大小n太小時難以求出最優解,太大則增長收斂時間。一般n=30-160。交叉概率Pc太小時難以向前搜索,太大則容易破壞高適應值的結構。一般取Pc=0.25-0.75。變異概率Pm太小時難以產生新的基因結構,太大使遺傳演算法成了單純的隨機搜索。一般取Pm=0.01—0.2。

三、遺傳演算法在神經網路中的應用

遺傳演算法在神經網路中的應用主要反映在3個方面:網路的學習,網路的結構設計,網路的分析。

1.遺傳演算法在網路學習中的應用

在神經網路中,遺傳演算法可用於網路的學習。這時,它在兩個方面起作用

(1)學習規則的優化

用遺傳演算法對神經網路學習規則實現自動優化,從而提高學習速率。

(2)網路權系數的優化

用遺傳演算法的全局優化及隱含並行性的特點提高權系數優化速度。

2.遺傳演算法在網路設計中的應用

用遺傳演算法設計一個優秀的神經網路結構,首先是要解決網路結構的編碼問題;然後才能以選擇、交叉、變異操作得出最優結構。編碼方法主要有下列3種:

(1)直接編碼法

這是把神經網路結構直接用二進制串表示,在遺傳演算法中,「染色體」實質上和神經網路是一種映射關系。通過對「染色體」的優化就實現了對網路的優化。

(2)參數化編碼法

參數化編碼採用的編碼較為抽象,編碼包括網路層數、每層神經元數、各層互連方式等信息。一般對進化後的優化「染色體」進行分析,然後產生網路的結構。

(3)繁衍生長法

這種方法不是在「染色體」中直接編碼神經網路的結構,而是把一些簡單的生長語法規則編碼入「染色體」中;然後,由遺傳演算法對這些生長語法規則不斷進行改變,最後生成適合所解的問題的神經網路。這種方法與自然界生物地生長進化相一致。

3.遺傳演算法在網路分析中的應用

遺傳演算法可用於分析神經網路。神經網路由於有分布存儲等特點,一般難以從其拓撲結構直接理解其功能。遺傳演算法可對神經網路進行功能分析,性質分析,狀態分析。

遺傳演算法雖然可以在多種領域都有實際應用,並且也展示了它潛力和寬廣前景;但是,遺傳演算法還有大量的問題需要研究,目前也還有各種不足。首先,在變數多,取值范圍大或無給定范圍時,收斂速度下降;其次,可找到最優解附近,但無法精確確定最擾解位置;最後,遺傳演算法的參數選擇尚未有定量方法。對遺傳演算法,還需要進一步研究其數學基礎理論;還需要在理論上證明它與其它優化技術的優劣及原因;還需研究硬體化的遺傳演算法;以及遺傳演算法的通用編程和形式等。

❹ 自適應遺傳演算法在求解TSP問題中的應用研究

利用基於分區搜索的自適應遺傳演算法求解TSP問題
江金龍,薛雲燦,馮駿
為了提高用遺傳演算法求解旅行商問題(TSP)的收斂速度,結合自適應運算元和父子競爭策略等優化思想,提出了基於分區搜索的自適應遺傳演算法.該演算法將整個搜索區域分成若干個較小的搜索區域,先進行局部搜索,在得到局部較優的基因組合後,再進行全區域搜索,不但提高了遺傳演算法的收斂速度,而且改進了變異運算元的操作性能.通過TSP問題的求解表明,基於分區搜索的自適應遺傳演算法是一種穩定、高效的優化演算法.
【作者單位】:河海大學計算機及信息工程學院;河海大學計算機及信息工程學院;河海大學計算機及信息工程學院 江蘇常州213022九江學院電子工程學院;江西九江332005;江蘇常州213022;江蘇常州213022
【關鍵詞】:遺傳演算法;分區搜索;旅行商問題
【基金】:湖北省自然科學基金資助項目(2004ABA018);河海大學常州校區創新基金資助項目(2005B002-01)
【分類號】:TP18
【DOI】:cnki:ISSN:1009-1130.0.2005-03-001
【正文快照】:
1分區搜索自適應遺傳演算法的基本思想旅行商問題(Traveling Salesm an Problem,TSP)是指旅行商從某城市出發,在遍歷N個城市後又回到出發點,且每個城市只經過一次,求旅行商行程最短的問題[1].TSP是一個N P難題,其可能的路徑數目隨城市數N的增加呈指數型增長.如果是對稱TSP問題,則共有0.5(N-1)!種可能路線,如果是非對稱TSP問題,可能的路線還會加倍.許多學者運用遺傳演算法的不同控制方法來求解TSP的最優解[2-3],但簡單遺傳演算法(Sim ple G enetic A lgorithm,SG A)的收斂速度慢,且易陷入局部最優解.如果能找到某些局部優良的基因組合(…
推薦 CAJ下載 PDF下載
CAJViewer7.0閱讀器支持所有CNKI文件格式,AdobeReader僅支持PDF格式

Solving Traveling Salesman Problem by the Adaptive Genetic Algorithm Based on the Regional Search
JIANG Jin-long1;2;XUE Yun-can1;FENG Jun1(1.College of Computer & Information Engineering;Hohai Univ.;Changzhou 213022;China;2.College of Electronic Engineering;Jiujiang Univ.;Jiujiang 332005;China)
To increase the convergence speed of the genetic algorithm in solving the traveling salesman problem(TSP),combined with adaptive operators and competitive strategy between parents and their children,an adaptive genetic algorithm based on the regional search is proposed. This algorithm divides the global space into regional space and makes the regional search first. The global space search is carried out based on the better local gene sequences obtained from the regional search,so as to improve the search speed. Moreover,this algorithm improves the mutation performance at the same time. The TSP simulations show that the improved algorithm is a steady and efficient optimal search method.
【Keyword】:genetic algorithms;regional search;traveling salesman problem(TSP)

❺ C語言遺傳演算法在求解TSP問題 畢業論文+源代碼



摘要
i
abstract
ii


1
第一章
基本遺傳演算法
2
1.1
遺傳演算法的產生及發展
3
1.2
基本原理
3
1.3
遺傳演算法的特點
3
1.4
基本遺傳演算法描述
5
1.5
遺傳演算法構造流程
6
第二章
遺傳演算法的實現技術
6
2.1
編碼方法
7
2.1.1
二進制編碼
7
2.1.2
格雷碼編碼
7
2.1.3
符點數編碼
8
2.1.4
參數編碼
8
2.2
適應度函數
10
2.3
選擇運算元
10
2.4
交叉運算元
10
2.4.1
單點交叉運算元
10
2.4.2
雙點交叉運算元
11
2.4.3
均勻交叉運算元
11
2.4.4
部分映射交叉
11
2.4.5
順序交叉
12
2.5
變異運算元
12
2.6
運行參數
12
2.7
約束條件的處理方法
13
2.8
遺傳演算法流程圖
14
第三章
遺傳演算法在tsp上的應用
15
3.1
tsp問題的建模與描述
15
3.2
對tsp的遺傳基因編碼方法
16
3.3
針對tsp的遺傳操作運算元
17
3.3.1
選擇運算元
17
3.3.1.1
輪盤賭選擇
17
3.3.1.2
最優保存策略選擇
17
3.3.2
交叉運算元
20
3.3.2.1
單點交叉
20
3.3.2.2
部分映射交叉
21
3.3.3
變異運算元
23
3.4
tsp的混和遺傳演算法
26
第四章
實例分析
27
4.1
測試數據
27
4.2
測試結果
27
4.3
結果分析
27


tsp
(traveling
salesman
problem)旅行商問題是一類典型的np完全問題,遺傳演算法是解決np問題的一種較理想的方法。文章首先介紹了基本遺傳演算法的基本原理、特點及其基本實現技術;接著針對tsp
問題,論述了遺傳演算法在編碼表示和遺傳運算元(包括選擇運算元、交叉運算元變異運算元這三種運算元)等方面的應用情況,分別指出幾種常用的編碼方法的優點和缺點,並且結合tsp的運行實例詳細分析了基本遺傳演算法的4個運行參數群體大小、遺傳演算法的終止進化代數、交叉概率、變異概率,對遺傳演算法的求解結果和求解效率的影響,經過多次的測試設定出了它們一組比較合理的取值。最後,簡單說明了混合遺傳演算法在求解tsp問題中的應用並對遺傳演算法解決tsp問題的前景提出了展望。
關鍵詞:tsp
遺傳演算法
遺傳運算元
編碼
@@@需要的話按我的名字找我吧

❻ 遺傳演算法求tsp問題怎麼調用實際距離

不知道,你網路吧

❼ 遺傳演算法求解tsp問題的matlab程序

把下面的(1)-(7)依次存成相應的.m文件,在(7)的m文件下運行就可以了
(1) 適應度函數fit.m
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
(2)個體距離計算函數 mylength.m
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end

end
(3)交叉操作函數 cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end

end
(4)對調函數 exchange.m
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;

end
(5)變異函數 Mutation.m
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);

temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)連點畫圖函數 plot_route.m
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end

end
(7)主函數
clear;
clc;
%%%%%%%%%%%%%%%輸入參數%%%%%%%%
N=50; %%城市的個數
M=100; %%種群的個數
C=100; %%迭代次數
C_old=C;
m=2; %%適應值歸一化淘汰加速指數
Pc=0.4; %%交叉概率
Pmutation=0.2; %%變異概率
%%生成城市的坐標
pos=randn(N,2);
%%生成城市之間距離矩陣
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%如果城市之間的距離矩陣已知,可以在下面賦值給D,否則就隨機生成

%%生成初始群體
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%隨機選擇一個種群
R=popm(1,:);

figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%畫出種群各城市之間的連線
axis([-3 3 -3 3]);
%%初始化種群及其適應函數
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);

distance_min=zeros(C+1,1); %%各次迭代的最小的種群的距離
while C>=0
fprintf('迭代第%d次\n',C);
%%選擇操作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand*0.3;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次選擇都保存最優的種群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];

%%交叉操作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nn*Pc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%變異操作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求適應度函數
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);

❽ 遺傳演算法和蟻群演算法在求解TSP問題上的對比分析

【原創】比遺傳演算法性能更好:蟻群演算法TSP(旅行商問題)通用matlab程序
聲明:本程序為本人原創,在研學論壇首次發表,本人保留一切權利,僅供學習交流用,如轉載請註明原作者!

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:[email protected]
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符號說明
%% C n個城市的坐標,n×2的矩陣
%% NC_max 最大迭代次數
%% m 螞蟻個數
%% Alpha 表徵信息素重要程度的參數
%% Beta 表徵啟發式因子重要程度的參數
%% Rho 信息素蒸發系數
%% Q 信息素增加強度系數
%% R_best 各代最佳路線
%% L_best 各代最佳路線的長度
%%=========================================================================

%%第一步:變數初始化
n=size(C,1);%n表示問題的規模(城市個數)
D=zeros(n,n);%D表示完全圖的賦權鄰接矩陣
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta為啟發因子,這里設為距離的倒數
Tau=ones(n,n);%Tau為信息素矩陣
Tabu=zeros(m,n);%存儲並記錄路徑的生成
NC=1;%迭代計數器
R_best=zeros(NC_max,n);%各代最佳路線
L_best=inf.*ones(NC_max,1);%各代最佳路線的長度
L_ave=zeros(NC_max,1);%各代路線的平均長度

while NC<=NC_max%停止條件之一:達到最大迭代次數
%%第二步:將m只螞蟻放到n個城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只螞蟻按概率函數選擇下一座城市,完成各自的周遊
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));%已訪問的城市
J=zeros(1,(n-j+1));%待訪問的城市
P=J;%待訪問城市的選擇概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面計算待選城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原則選取下一個城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end

%%第四步:記錄本次迭代最佳路線
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1

%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;

%%第六步:禁忌表清零
Tabu=zeros(m,n);
end

%%第七步:輸出結果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave)

function DrawRoute(C,R)
%%=========================================================================
%% DrawRoute.m
%% 畫路線圖的子函數
%%-------------------------------------------------------------------------
%% C Coordinate 節點坐標,由一個N×2的矩陣存儲
%% R Route 路線
%%=========================================================================

N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
hold on
end

設置初始參數如下:
m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;
31城市坐標為:
1304 2312
3639 1315
4177 2244
3712 1399
3488 1535
3326 1556
3238 1229
4196 1004
4312 790
4386 570
3007 1970
2562 1756
2788 1491
2381 1676
1332 695
3715 1678
3918 2179
4061 2370
3780 2212
3676 2578
4029 2838
4263 2931
3429 1908
3507 2367
3394 2643
3439 3201
2935 3240
3140 3550
2545 2357
2778 2826
2370 2975

運行後得到15602的巡遊路徑,

❾ 用遺傳演算法求解TSP問題,我打算抄這個的,高手幫我看看能行不,另外如果有軟體幫我算個結果

遺傳演算法真不用錢就能解決,現在很多人都在搞,已經非常成熟了。你用C,C#,C++,Matlab都行。這個網址提供的演算法行,可以運行,是30個城市,但是你要自行選擇交叉概率,突變概率等。種群盡量要大:1000以上;

交叉概率要大:0.7以上;

突變概率要小:0.3以下;

最優個體我建議保存一個,因為你要看最好結果嗎

剩下的呢自己測試;

結果(我自己取的參數):

演算法終止條件A.最多迭代次數:1000

演算法終止條件B.最短路徑連續保持不變代數:20

種群個體數量:500

交叉概率:0.7

交叉部分佔整體的百分比:50

突變概率:0.2

最優個體保留最大數量:1

選擇操作最優個體被保護概率:0.8

交叉操作最優個體被保護概率:0.8

突變操作最優個體被保護概率:0.8

得出的結果:Rlength=1.0213e+003,結果如圖

熱點內容
法國電影小男孩在農場遇到一隻白狗 發布:2024-08-19 08:36:47 瀏覽:594
微光上有什麼恐怖片 發布:2024-08-19 05:25:40 瀏覽:915
穿越香港鬼片滅鬼的小說 發布:2024-08-19 03:36:10 瀏覽:833
惡之花都敏秀姐姐扮演者 發布:2024-08-19 02:22:07 瀏覽:321
thai好看電影 發布:2024-08-18 11:34:37 瀏覽:795
電影內容女的是傻子容易尿褲子,男的很窮單身漢 發布:2024-08-18 10:31:36 瀏覽:129
雙機巨幕廳和4k廳哪個好 發布:2024-08-18 10:18:41 瀏覽:818
日本僵屍片上世紀 發布:2024-08-18 07:32:00 瀏覽:537
怪物 韓國電影在線 發布:2024-08-18 03:49:17 瀏覽:491
第九區一樣的 發布:2024-08-17 23:16:05 瀏覽:528