遺傳演算法最優解
『壹』 遺傳演算法的優缺點
優點:
1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。
另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。
2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。
3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。
另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。
4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。
5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。
缺點:
1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。
2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。
3、遺傳演算法效率通常低於其他傳統的優化方法。
4、遺傳演算法容易出現過早收斂的問題。
(1)遺傳演算法最優解擴展閱讀
遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。
函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。
為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。
『貳』 遺傳演算法求解非線性規劃一定是最優解嗎
只是局部最優解,不是全局最優解
『叄』 如何用遺傳演算法實現多變數的最優化問題
將多個變數的數值編碼編排進去,進行組合,只需要增長基因個體的長度,但專是要明確每個變屬量具體的位置,然後讓每個變數轉化成二進制的等長編碼,組合在一起,就可以來運算了。
『肆』 遺傳演算法是不是種群規模選取越大,全局最優解越好!
種群規模是指任意一代中的個體總數,這個是人為設定的,種群規模越大越可能找到全局解,但運行時間也相對較長,一般在40-100之間取值,像我就習慣選60.
至於你所處理的問題,可以對比不同的種群規模下最優解和運行時間,然後折衷取。
『伍』 在matlab裡面GA遺傳演算法工具箱中怎麼找到多個局部最優解,我現在只能找到全局最優解
這個需要根據參數設置來進行的,參數設置合理就可以得到全局最優解,反之,可能得到局部最優解
『陸』 遺傳演算法求最優解,及matlab模擬的步驟 要詳細步驟!!!
這么復雜的公式,要有數據才能試驗編程。不是一下能搞定的。
『柒』 我有一個物理實驗,有3個參數,需要找到最優解,我有一個想法是利用遺傳演算法找最優解。
遺傳來演算法(Genetic Algorithm)是一類借鑒生物自界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;
具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。
它是現代有關智能計算中的關鍵技術。
『捌』 遺傳演算法的最優解 在論文中如何驗證
適應度越大,解越優。
判斷是否已得到近似全局最優解的方法就是遺傳演算法的終止條件。 在最大迭代次數范圍內可以選擇下列條件之一作為終止條件:
最大適應度值和平均適應度值變化不大、趨於穩定;
2. 相鄰GAP代種群的距離小於可接受值,參考「蔣勇,李宏.改進NSGA—II終止判斷准則[J].計算機模擬.2009. Vol.26 No.2」
『玖』 用matlab優化工具箱自帶的遺傳演算法(只能找到近似最優解)時,往往重復計算很多次都不能得到最優解
要想得到較精確的最優解,可以通過設定Function tolerance的誤差值,Constrainttolerance的誤差值。
『拾』 遺傳演算法怎麼判斷何時為最優解
適應度越大,解越優。
判斷是否已得到近似全局最優解的方法就是遺傳演算法的終止條件。 在最大迭代次數范圍內可以選擇下列條件之一作為終止條件:
1. 最大適應度值和平均適應度值變化不大、趨於穩定;
2. 相鄰GAP代種群的距離小於可接受值,參考「蔣勇,李宏.改進NSGA—II終止判斷准則[J].計算機模擬.2009. Vol.26 No.2」